Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Синтез наночастиц фторида стронция в микрореакторе с интенсивно закрученными потоками

https://doi.org/10.17586/2220-8054-2024-15-1-115-121

Аннотация

Метод микроперемешивания использован для синтеза нанопорошков SrF2 в микрореакторе с интенсивно закрученными потоками. Химическую реакцию между водными растворами нитрата стронция (CmSr(NO3)2 = 0,15-0,45М) и фторида калия (CmKF = 0,3-0,9М) проводили в микрореакторе с интенсивно закрученными потоками. Расход реагента составлял 1,5-3,5 л/мин. Были получены коллоидные растворы, при отстаивании которых были выделены порошки SrF2. Частицы не имеют кристаллографической огранки. Увеличение скорости потока реагента мало влияет на размер областей когерентного рассеяния D, тогда как увеличение концентрации растворов приводит к увеличению D от ~ 20 до ~ 30 нм.

Об авторах

Р. Ш. Абиев
Institute of Silicate Chemistry I.V. Grebenshchikov RAS; St. Petersburg State Institute of Technology
Россия


А. В. Здравков
Institute of Silicate Chemistry I.V. Grebenshchikov RAS
Россия


Ю. С. Кудряшова
Institute of Silicate Chemistry I.V. Grebenshchikov RAS
Россия


А. А. Александров
Prokhorov General Physics Institute of the Russian Academy of Sciences
Россия

Александр Александрович Александров



С. В. Кузнецов
Prokhorov General Physics Institute of the Russian Academy of Sciences
Россия


П. П. Фёдоров
Prokhorov General Physics Institute of the Russian Academy of Sciences
Россия


Список литературы

1. Zverev V.A., Krivopustova E.V., Tochilina T.V. Optical materials. Part 2. St.-Petersburg: ITMO, 2013, 248 p. (in Russian)

2. Yakovenchuk V.N., Ivanyuk G.Yu., Pakhomovsky Y.A., et al. Strontiofluorite, SrF2, a new mineral species from the Khibiny massif, Kola peninsula, Russia. The Canadian Mineralogist, 2010, 48, P. 1487–1492.

3. Sobolev B.P., Seiranian K.B. J. Solid State Chem., 1981, 39 (2), 17

4. Kaminskii A.A. Laser Crystals. Their Physics and Properties. Berlin, Springer, 1990.

5. Sobolev B.P. The Rare Earth Trifluorides. Part 2. Introduction to materials science of multicomponent metal fluoride crystals. Barcelona: Institut d‘Estudis Catalans. 2001. 459 p.

6. Moncorge R., Braud A., Camy P., Doualan J.L. Fluoride laser crystals. In: Handbook on solid-state lasers: materials, systems and applications. Ed. by B. Denker, E. Shklovsky. Oxford Cambridge Philadelphia New Delhi, Woodhead Publishing Limited, UK, 2013, p. 82–109.

7. Druon F., Ricaud S., Papadopoulos D.N., Pellegrina A., Camy P., Doulan J.L., Moncorge R., Courjaud A., Mottay E., Georges P. On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance. Opt. Mater. Express, 2011, 1, P. 489–502.

8. Alimov O.K., Basiev T.T., Doroshenko M.E., Fedorov P.P., Konyuskin V.A., Nakladov A.N., Osiko V.V. Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride single crystal. Opt. Mater., 2012, 34 (5), P. 799–802.

9. Li W., Mei B., Song J. Nd , -codoped SrF2 laser ceramics. Opt. Mater., 2015, 47, P. 108–111.

10. Saleta Reig D., Grauel B., Konyushkin V.A., Nakladov A.N., Fedorov P.P., Busko D., Howard I.A., Richards B.S., Resch-Genger U., Kuznetsov S.V., Turshatov A., Wurth C. Upconversion properties of SrF ¨ 2:Yb3+, Er3+ single crystals. J. Mat. Chem. C, 2020, 8, P. 4093–4101.

11. Sorokin N.I., Sobolev B.P. Correlation between the Fluorine Ion Conductivities of Sr1−xRxF2+x(CaF2 Type) and R1−ySryF3−y (LaF3 Type) Crystals in the SrF2–RF3 Systems (R = La–Nd). Physics of the Solid State, 2019, 61 (11), P. 2064–2069.

12. Rozhnova Yu.A., Kuznetsov S.V., Luginina A.A., Voronov V.V., Ryabova A.V., Pominova D.V., Ermakov R.P., Usachev V.A., Kononenko N.E., Baranchikov A.E., Ivanov V.K., Fedorov P.P. New Sr1−x−yRx(NH4)yF2+x−y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Mater. Chem. Physics., 2016, 172, P. 150–157.

13. Zhu T., Mei B., Li W., Yang Y., Song J. Fabrication, microstructure and spectral properties of Nd:SrF2 transparent ceramics with different concentration of La3+ ions. Opt. Mater., 2019, 89, P. 598–603.

14. Gao Y., Mei B., Li W., Zhou Z., Liu Z. Effect of Yb3+ concentration on microstructure and optical properties of Yb: SrF2 transparent ceramics. Opt. Mater., 2020, 105, 109869.

15. Yi G., Mei B., Li W., Song J., Liu Z., Zhou Z., Su L. Synthesis and luminescence characterization of Pr3+, Gd3+ co-doped SrF2 transparent ceramics. J. Am. Ceram. Soc., 2020, 103 (1), P. 279–286.

16. Zheng C., Sun Z., Li W., Yang Y., Mei B. Fabrication and spectral properties of Dy: SrF2 transparent ceramics. Mater. Chem. Phys., 2021, 273, 125141.

17. Liu Z., Ji Y., Xu C., Wang Y., Liu Y., Shen Q., Yi G., Yu Y., Mei B., Liu P., Jing Qi. Microstructural, spectroscopic and mechanical properties of hot-pressed Er:SrF2 transparent ceramics. J. Eur. Ceram. Soc., 2021, 41, P. 4907–4914.

18. Yang Y., Zhou Z., Mei B., Zhang Y., Liu X. Fabrication and upconversion luminescence properties of Er:SrF2 transparent ceramics compared with Er:CaF2. Ceram. Int., 2021, 47, P. 17139–17146.

19. Qin S., Song J., Wang W., Mei B., Li W., Xia Y. Study in optical and mechanical properties of Nd3+, Y3+: SrF2 transparent ceramics prepared by hot-pressing and hot-forming techniques, Crystals, 2019, 619.

20. Arnold M., Katzmann J., Naik A., Go¨rne A.L., Ha¨rtling T., George J., Schuster C. Investigations on electron beam irradiated rare-earth doped SrF2 for application as low fading dosimeter material: evidence for and DFT simulation of a radiation-induced phase. J. Mater. Chem. C, 2022, 10, P. 11579–11587.

21. Yagoub Y.A., Swart H.C., Coetsee E. Luminescent behavior of SrF2 and CaF2 crystals doped with Eu ions under different annealing temperatures. J. Alloys and Compd., 2021, 858, 157741.

22. Wolfbeis S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44, P. 4743–4768.

23. Richards B.S., Hudry D., Busko D., Turshatov A., Howard I.A. Photon upconversion for photovoltaics and photocatalysis. Chem. Rev., 2021, 121, P. 9165–9195.

24. Brites C.D.S., Marin R., Suta M., Carneiro Neto A.N., Ximendes E., Jaque D., Carlos L.D. Spotlight on luminescence thermometry: basics, challenges, and cutting-edge applications. Advanced Materials, 2023, 35, 2302749.

25. Park C., Park S. Effective up-conversion behaviors for Er3+–Yb3+-doped SrF2 phosphors synthesized by flux-assist method. J. Mater. Sci. Mater. Electron., 2020, 31, P. 832–837.

26. Joseph R.E., Hudry D., Busko D., Biner D., Turshatov A., Kra¨mer K., Richards B.S., Howard I.A. Bright constant color upconversion based on dual 980 and 1550 nm excitation of SrF2:Yb3+, Er3+ and β-NaYF4:Yb3+, Er3+ micropowders – considerations for persistence of vision displays. Opt. Mater., 2021, 111, 110598.

27. Runowski M., Marciniak J., Grzyb T., Przybylska D., Shyichuk A., Barszcz B., Katrusiak A., Lis S. Lifetime nanomanometry – high-pressure luminescence of up-converting lanthanide nanocrystals – SrF2:Yb3+,Er3+. Nanoscale, 2017, 9, P. 16030–16037.

28. Ryszczynska S., Grzyb T. NIR-to-NIR and NIR-to-Vis up-conversion of SrF2:Ho3+ nanoparticles under 1156 nm excitation. Methods Appl. Fluoresc., 2022, 10, 024001.

29. Zeng Q., He W., Luan F., Yan Y., Du H., Fu J., Guo D. Insight into the mechanism of intense NIR-to-red upconversion luminescence in Er doped and Er3+–Yb3+ co-doped SrF2 nanoparticles. New J. Chem., 2021, 45, P. 6469–6478.

30. Yagoub M.Y.A., Swart H.C., Coetsee E. Structural, surface and luminescent properties of SrF2:Eu annealed thin films. Vacuum, 2021, 191, 110362.

31. Yan Y., Tan Y., Li D., Luan F., Guo D. Efficient energy transfer, multi-colour emitting and temperature sensing behavior of single-phase Tb 3+, Eu3+ co-doped strontium fluoride phosphors. J. Lumin., 2019, 211, P. 209–217

32. Luginina A.A., Kuznetsov S.V., Ivanov V.K., Voronov V.V., Yapryntsev A.D., Lyapin A.A., Chernova E.V., Pynenkov A.A., Nishchev K.N., Gaynutdinov R.V., Bogach A.V., Fedorov P.P. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Ho composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose, 2021, 28 (17), P. 10841–10862.

33. Fedorov P.P., Luginina A.A., Kuznetsov S.V., Osiko V.V. Nanofluorides. J. Fluorine Chem., 2011, 132 (12), P. 1012–1039.

34. Karimov D.N., Demina P.A., Koshelev A.V.,. Rocheva V.V, Sokovikov A.V., Generalova A.N., Zubov V.P., Khaydukov E.V., Koval’chuk M.V., Panchenko V.Ya. Upconversion nanoparticles: synthesis, photoluminescence properties, and applications. Nanotechnol. Russ., 2020, 15, P. 655– 678.

35. Mayakova M.N., Luginina A.A., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Baranchikov A.E., et al. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueos solutions. Mendeleev Communications, 2014, 24 (6), P. 360–362.

36. Ermakova Yu.A., Pominova D.V., Voronov V.V., Yapryntsev A.D., Ivanov V.K., Tabachkova N.Yu., Fedorov P.P., Kuznetsov S.V. Synthesis of SrF2:Yb:Er ceramics precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF, and NH4F. Dalton Trans., 2022, 51, P. 5448–5456.

37. Zhang C., Hou Z., Chai R., Cheng Z., Xu Z., Li C., Huang L., Lin J. Mesoporous SrF2 and SrF2:Ln3+ (Ln = Ce, Tb, Yb, Er) Hierarchical Microspheres: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. J. Phys. Chem., 2010, 114, P. 6928–6936.

38. Chen D., Yu Y., Huang F., Huang P., Yang A., Wang Y. Modifying the Size and Shape of Monodisperse Bifunctional Alkaline-Earth Fluoride Nanocrystals through Lanthanide Doping. J. Am. Chem. Soc., 2010, 132, P. 9976–9978.

39. Sun J., Xian J., Du H. Facile synthesis of well-dispersed SrF2:Yb3+/Er3+ upconversion nanocrystals in oleate complex systems. Appl. Surf. Sci., 2011, 257, P. 3592–3595.

40. Sun J., Xian J., Zhang X., Du H. Hydrothermal synthesis of SrF2:Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and upconversion properties. J. Rare Earth, 2011, 29, P. 32–38.

41. Peng J., Hou S., Liu X., Feng J., Yu X., Xing Y., Su Z. Hydrothermal synthesis and luminescence properties of hierarchical SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures. Mater. Res. Bull., 2012, 47, P. 328–332.

42. Yagoub M.Y.A., Swart H.C., Noto L.L., O‘Connel J.H., Lee M.E., Coetsee E. The effects of Eu-concentrations on the luminescent properties of SrF2:Eu nanophosphor. J. Lumin., 2014, 156, P. 150–156.

43. Yagoub M.Y.A., Swart H.C., Noto L.L., Bergman P., Coetsee E. Surface characterization and photoluminescence properties of Ce3+,Eu co-doped SrF2 nanophosphor. Materials, 2015, 8, P. 2361–2375.

44. Quintanilla M., Cantarelli I.X., Pedroni M., Speghini A., Vetrone F. Intense ultraviolet upconversion in water dispersible SrF2:Tm3+,Yb3+ nanoparticles: the effect of the environment on light emissions. J. Mater. Chem. C, 2015, 3, P. 3108–3113.

45. Li A.H., et al. Upconversion-luminescent/magnetic dual-functional sub-20 nm core-shell SrF2:Yb,Tm@CaF2:Gd heteronanoparticles. Dalt. Trans., 2016, 45, P. 5800–5807.

46. Xie J., Bin J., Guan M., Liu H., Yang D., Xue J., et al. Hydrothermal synthesis and upconversion luminescent properties of Sr2LaF7 doped with Yb3+ and Er3+ nanophosphors. J. Lumin., 2018, 200, P. 133–140.

47. Balabhadra S., Debasu M.L., Brites C.D.S., Ferreira R.A.S., Carlos L.D. Radiation-to-heat conversion efficiency in SrF2:Yb3+/Er3+ nanoparticles. Opt. Mater., 2018, 83, P. 1–6.

48. Cortelletti P., Pedroni M., Boschi F., Pin S., Ghigna P., Canton P., et al. Luminescence of Eu Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions. Cryst. Growth Des., 2018, 18 (2), P. 686–694.

49. Przybylska D., Ekner-Grzyb A., Grzes´kowiak B.F., Grzyb T. Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+ions – optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies. Scientific Reports, 2019, 9, 8669.

50. Du S., Wang Y. A broad-range temperature sensor dependent on the magnetic and optical properties of SrF2:Yb 21, P. 1452–1457.

51. Przybylska D., Grzyb T. Synthesis and up-conversion of core/shell SrF2:Yb3+/Er3+ 2 3+,Nd3+ nanoparticles under 808, 975, and 1532 nm excitation wavelengths. J. Alloys Compd., 2020, 831, 154797.

52. Fedorov P.P., Alexandrov A.A. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. J. Fluorine Chem., 2019, 227, 109374.

53. Proydakova V.Yu., Alexandrov A.A., Voronov V.V., Fedorov P.P. Synthesis of Calcium and Strontium Fluorides Using Li2SO4–Na2SO4 Eutectic Melts. Russ. J. Inorg. Chem., 2020, 65 (6), P. 834–838.

54. Park C., Park S. Effective up-conversion behaviors for Er3+–Yb3+-doped SrF2 phosphors synthesized by flux-assist method. J. Mater. Sci.: Mater. Electron., 2020, 31 (1), P. 832–837.

55. Ritter B., Haida P., Krahl T., Scholz G., Kemnitz E. Core-shell metal fluoride nanoparticles via fluorolytic sol-gel synthesis – a fast and efficient construction kit. J. Mater. Chem. C, 2017, 5 (22), P. 5444–5450.

56. Ritter B., Haida P., Fink F., Krahl T., Gawlitza K., Rurack K., et al. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles – structure and luminescence. Dalton Transactions, 2017, 46 (9), P. 2925–2936.

57. Krahl T., Beer F., Relling A., Gawlitza K., Rurack K., Kemnitz E. Toward Luminescent Composites by Phase Transfer of SrF2:Eu Capped with Hydrophobic Antenna Ligands. ChemNanoMat., 2020, 6 (7), P. 1086–1095.

58. Yusenko K.V., Kabelitz A., Scho¨kel A., Wagner R., Prinz C., Kemnitz E., et al. Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study. ChemNanoMat., 2021, 7 (11), P. 1221–1229.

59. Monks M.-J., Wurth C., Kemnitz E., Resch-Genger U. Dopant ion concentration-dependent upconversion luminescence of cubic SrF :Yb , Er nanocrystals prepared by a fluorolytic sol-gel method. Nanoscale, 2022, 32.

60. Rakov N., Guimaraes R.B., Franceschini D.F., Maciel G.S. Er:SrF2 luminescent powders prepared by combustion synthesis. Mater. Chem. Phys., 2012, 135, P. 317–321.

61. Rakov N., Guimaraes R.B., Maciel G.S. Managing optical heating via Al synthesis. DaltonTrans., 2019, 48 (14), P. 4589–4595.

62. Glazunova T.Yu., Boltalin A.I., Fedorov P.P. Synthesis of calcium, strontium, and barium fluorides by thermal decomposition of trifluoroacetates. Russ. J. Inorg. Chem., 2006, 51 (7), P. 983–987. https://doi.org/10.1134/S0036023606070011

63. Heise M., Scholz G., Krahl T., Kemnitz E. Luminescent properties of Eu3+ doped CaF2, SrF2, BaF2 and PbF2 powders prepared by high-energy ball milling. Solid State Sciences, 2019, 91, P. 113–118.

64. Gulina L.B., Scha¨fer M., Privalov A.F., Tolstoy V.P., Murin I.V., Vogel M. Synthesis and NMR investigation of 2D nanocrystals of the LaF3 doped by SrF2. J. Fluorine Chem., 2016, 188, P. 185–190.

65. Fedorov P.P., Mayakova M.N., Maslov V.A., Baranchikov A.E., Ivanov V.K., Pynenkov A.A., Uslamina M.A., Nishchev K.N. The solubility of sodium and potassium fluorides in the strontium fluoride. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (6), P. 830–834.

66. Falk L., Commenge J.-M. Performance comparison of micromixers. Chem. Eng. Sci., 2010, 65, P. 405–411.

67. Abiev R.Sh., Zdravkov A.V., Kudryashova Yu.S., Alexandrov A.A., Kuznetsov S.V., Fedorov P.P. Syntheses of calcium fluoride nanoparticles in a microreactor with intensely swirling flows. Russ. J. Inorg. Chem., 2021, 66 (7), P. 1049–1054.

68. Abiev R.Sh. Impinging-Jets Micromixers and Microreactors: State of the Art and Prospects for Use in the Chemical Technology of Nanomaterials (Review). Theor. Found. Chem., 2020, 54, P. 1131–1147.

69. Abiev R.Sh., Sirotkin A.A. Influence of Hydrodynamic Conditions on Micromixing in Microreactors with Free Impinging Jets. Fluids, 2020, 5 (4), 179.

70. Proskurina O.V., Abiev R.Sh., Nevedomskiy V.N. Influence of using different types of microreactors on the formation of nanocrystalline BiFeO3. Nanosystems: Phys. Chem. Math., 2023, 14 (1), P. 120–126.

71. Lomakin M.S., Proskurina O.V., Abiev R.Sh., Leonov A.A., Nevedomskiy V.N., Voznesenskiy S.S., Gusarov V.V. Pyrochlore phase in the Bi2O3– Fe2O3–WO3–(H2O) system: Physicochemical and hydrodynamic aspects of its production using a microreactor with intensively swirled flows. Advanced Powder Technology, 2023, 34, 104053.

72. Abiev R.S., Kudryashova Y.S., Zdravkov A.V., Fedorenko N.Y. Micromixing and Co-Precipitation in Continuous Microreactors with Swirled Flows and Microreactors with Impinging Swirled Flows. Inorganics, 2023, 11, 49.

73. Barashok K.I., Panchuk V.V., Semenov V.G., Almjasheva O.V., Abiev R.Sh. Formation of cobalt ferrite nanopowders in an impinging-jets microreactor. Nanosystems: Phys., Chem., Math., 2021, 12 (3), P. 303–310.

74. Pominova D., Romanishkin I., Proydakova V., Kuznetsov S., Grachev P., Ryabova A., Tabachkova N., Fedorov P., Loschenov V. Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence, 2022, 10, 024005.


Рецензия

Для цитирования:


Абиев Р.Ш., Здравков А.В., Кудряшова Ю.С., Александров А.А., Кузнецов С.В., Фёдоров П.П. Синтез наночастиц фторида стронция в микрореакторе с интенсивно закрученными потоками. Наносистемы: физика, химия, математика. 2024;15(1):115-121. https://doi.org/10.17586/2220-8054-2024-15-1-115-121

For citation:


Abiev R.Sh., Zdravkov A.V., Kudryashova Yu.S., Alexandrov A.A., Kuznetsov S.V., Fedorov P.P. Synthesis of strontium fluoride nanoparticles in a microreactor with intensely swirling flows. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):115-121. https://doi.org/10.17586/2220-8054-2024-15-1-115-121

Просмотров: 4


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)