Пероксидазоподобная активность фотохромных наночастиц оксида вольфрама, стабилизированных ПВП: независимый анализ хемилюминесцентным и колориметрическим методами
https://doi.org/10.17586/2220-8054-2025-16-1-22-29
Аннотация
В данной работе пероксидазоподобную активность ультрамелких наночастиц оксида вольфрама, в том числе стабилизированных поливинилпирролидоном (ПВП), оценивали с помощью двух независимых подходов: колориметрического метода, основанного на анализе окисления 3,3',5,5'-тетраметилбензидина (ТМБ), и метода хемилюминесценции с использованием люминола в качестве молекулы-зонда. Было показано, что наночастицы нестабилизированного оксида вольфрама эффективно катализируют разложение пероксида водорода. В свою очередь, наночастицы, стабилизированные ПВП, обладают меньшей каталитической активностью, что можно объяснить уменьшением количества доступных активных центров на поверхности наночастиц.
Ключевые слова
Об авторах
M. А. ПопковРоссия
Е. Д. Шейченко
Россия
А. Д. Филиппова
Россия
И. В. Тронев
Россия
К. Н. Новоселова
Россия
Э. А. Труфанова
Россия
Д. Н. Васильева
Россия
М. Р. Проценко
Россия
М. М. Созарукова
Россия
А. Е. Баранчиков
Россия
В. К. Иванов
Россия
Список литературы
1. Kang T., Kim Y.G., Kim D., Hyeon T. Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coord. Chem. Rev., 2020, 403, P. 213092.
2. Liang X., Han L. White Peroxidase-Mimicking Nanozymes: Colorimetric Pesticide Assay without Interferences of O2 and Color. Adv. Funct. Mater., 2020, 30(28), P. 2001933.
3. Gao L., Zhuang J., Nie L., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9), P. 577–583.
4. Gao L. Enzyme-Like Property (Nanozyme) of Iron Oxide Nanoparticles. In: Iron Oxide Nanoparticles, IntechOpen, 2022.
5. Yang Y., Mao Z., Huang W., et al. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Sci. Rep., 2016, 6(1), P. 35344.
6. Filippova A.D., Baranchikov A.E., Ivanov V.K. Enzyme-Like Activity of Cerium Dioxide Colloidal Solutions Stabilized with L-Malic Acid. Colloid. J., 2023, 85(5), P. 782–794.
7. Filippova A.D., Sozarukova M.M., Baranchikov A.E., Kottsov S.Y., Cherednichenko K.A., Ivanov V.K. Peroxidase-like Activity of CeO2 Nanozymes: Particle Size and Chemical Environment Matter. Molecules, 2023, 28(9), P. 3811.
8. Zhao M., Tao Y., HuangW., He Y. Reversible pH switchable oxidase-like activities of MnO2 nanosheets for a visual molecular majority logic gate. Phys. Chem. Chem. Phys., 2018, 20(45), P. 28644–28648.
9. Lin S., Tan W., Han P., et al. A photonanozyme with light-empowered specific peroxidase-mimicking activity. Nano. Res., 2022, 15(10), P. 9073–9081.
10. Deng Z., Gong Y., Luo Y., Tian Y. WO3 nanostructures facilitate electron transfer of enzyme: Application to detection of H2O2 with high selectivity. Biosens. Bioelectron., 2009, 24(8), P. 2465–2469.
11. Kozlov D.A., Shcherbakov A.B., Kozlova T.O., et al. Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Nanoparticles. Molecules, 2019, 25(1), P. 154.
12. Lee S.-H., Deshpande R., Parilla P.A., et al. Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications. Adv. Mater., 2006, 18(6), P. 763–766.
13. Aliannezhadi M., Abbaspoor M., Shariatmadar Tehrani F., Jamali M. High photocatalytic WO3 nanoparticles synthesized using Sol-gel method at different stirring times. Opt. Quantum Electron., 2023, 55(3), P. 250.
14. Huang Z., Song J., Pan L., Zhang X., Wang L., Zou J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater., 2015, 27(36), P. 5309–5327.
15. Dong X., Lu Y., Liu X., Zhang L., Tong Y. Nanostructured tungsten oxide as photochromic material for smart devices, energy conversion, and environmental remediation. J. Photochem. Photobiol. C Photochem. Rev., 2022, 53, P. 100555.
16. Zeb S., Sun G., Nie Y., Xu H., Cui Y., Jiang X. Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications. Mater. Adv., 2021, 2(21), P. 6839–6884.
17. George J.M., Antony A., Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim. Acta, 2018, 185(7), P. 358.
18. Can F., Courtois X., Duprez D. Tungsten-Based Catalysts for Environmental Applications. Catalysts, 2021, 11(6), P. 703.
19. Kameneva S.V., Popkov M.A., Tronev I.V., Kottsov S.Y., Sozarukova M.M., Ivanov V.K. Photochromic aerogels based on cellulose and chitosan modified with WO3 nanoparticles. Nanosyst. Physics., Chem., Math, 2022, 13(4), P. 404–413.
20. Staerz A., Somacescu S., Epifani M., Russ T., Weimar U., Barsan N. WO3 Based Gas Sensors. In: EUROSENSORS 2018. MDPI, 2019, P. 826.
21. Zhou Y., She X.,Wu Q., Xiao J., Peng T. MonoclinicWO3 nanosheets-carbon nanotubes nanocomposite based electrochemical sensor for sensitive detection of bisphenol A. J. Electroanal. Chem., 2022, 915, P. 116355.
22. Anithaa A.C., Lavanya N., Asokan K., Sekar C.WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim. Acta, 2015, 167, P. 294–302.
23. Sharma A., Saini A.K., Kumar N., et al. Methods of preparation of metal-doped and hybrid tungsten oxide nanoparticles for anticancer, antibacterial, and biosensing applications. Surfaces and Interfaces, 2022, 28, P. 101641.
24. Bashir A., Khan S.R., Aqib A.I., Shafique L., Ataya F.S. Multifunctional integration of tungsten oxide (WO3) coating: A versatile approach for enhanced performance of antibiotics against single mixed bacterial infections. Microb. Pathog., 2024, 189, P. 106571.
25. Popov A.L., Han B., Ermakov A.M., et al. PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity. Mater. Sci. Eng. C, 2020, 108, P. 110494.
26. Jiang X., Liu W., Li Y., et al. WO3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening. Talanta, 2024, 267, P. 125129.
27. Sadashivanna R.H., Krishna H., Shivakumar A., Gangadhara N.Y., Mahesh Lohith K.S., Krishnegowda A. Oxalic acid capped tungsten oxide nanozyme mimicking peroxidase activity, its synthesis characterization, and kinetic data validation via spectrophotometric studies. Nano-Structures & Nano-Objects, 2024, 40, P. 101340.
28. Robert A., Meunier B. How to Define a Nanozyme. ACS Nano, 2022, 16(5), P. 6956–6959.
29. Zandieh M., Liu J. Nanozymes: Definition, Activity, and Mechanisms. Adv. Mater., 2024, 36(10), P. 2211041.
30. Popov A.L., Savintseva I.V., Popova N.R., et al. PVP-stabilized tungsten oxide nanoparticles (WO3) nanoparticles cause hemolysis of human erythrocytes in a dose-dependent manner. Nanosyst. Physics., Chem., Math, 2019, 10(2), P. 199–205.
31. Basha M.A.F. Magnetic and optical studies on polyvinylpyrrolidone thin films doped with rare earth metal salts. Polym. J.., 2010, 42(9), P. 728–734.
32. Pacheco M.L., Pinto T.V., Sousa C.M., et al. Tuning the Photochromic Properties of WO3 -Based Materials toward High-Performance Light- Responsive Textiles. ACS Appl. Opt. Mater., 2023, 1(8), P. 1434–1451.
33. Hussain M., Kalulu M., Ahmad Z., Ejeromedoghene O., Fu G. Rapid fabrication of polyoxometalate-enhanced photo responsive films from ethyl cellulose (EC) and polyvinylpyrrolidone (PVP). Int. J. Biol. Macromol., 2024, 280, P. 136051.
34. Jiang B., Duan D., Gao L., et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc., 2018, 13(7), P. 1506–1520.
35. Zheng J.J., Zhu F., Song N., et al. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc., 2024, 19, 3470–3488.
36. Feng K.,Wang G.,Wang S., et al. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. Adv. Mater., 2024, 36(31), P. 2401619.
37. Eroi S.N., Ello A.S., Diabat´e D., Ossonon D.B. Heterogeneous WO3/H2O2 system for degradation of Indigo Carmin dye from aqueous solution. South African J. Chem. Eng., 2021, 37, P. 53–60.
38. Shi R., Wei S., Cheng S., Zeng J., Wang Y., Shu X. Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme. Chem. Res. Chinese Univ., 2022, 38(4), P. 985–990.
39. Yang J., Cheng S.Q., Shi R., Ying Qin S., Huang L., Lin Wang Y. Spectrophotometric detection of uric acid with enzyme-like reaction mediated 3,3’,5,5’-tetramethylbenzidine oxidation. Bull. Chem. Soc. Ethiop., 2022, 37(1), P. 11–21.
40. Li Z., Liu X., Liang X.H., Zhong J., Guo L., Fu F. Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO3 nanosheets. Talanta, 2019, 204, P. 278–284.
Рецензия
Для цитирования:
Попков M.А., Шейченко Е.Д., Филиппова А.Д., Тронев И.В., Новоселова К.Н., Труфанова Э.А., Васильева Д.Н., Проценко М.Р., Созарукова М.М., Баранчиков А.Е., Иванов В.К. Пероксидазоподобная активность фотохромных наночастиц оксида вольфрама, стабилизированных ПВП: независимый анализ хемилюминесцентным и колориметрическим методами. Наносистемы: физика, химия, математика. 2025;16(1):22-29. https://doi.org/10.17586/2220-8054-2025-16-1-22-29
For citation:
Popkov M.A., Sheichenko E.D., Filippova A.D., Tronev I.V., Novoselova K.N., Trufanova E.A., Vasilyeva D.N., Protsenko M.R., Sozarukova M.M., Baranchikov A.E., Ivanov V.K. Peroxidase-like activity of photochromic PVP-stabilized tungsten oxide nanoparticles: assessment by independent chemiluminescent and colorimetric assays. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):22-29. https://doi.org/10.17586/2220-8054-2025-16-1-22-29