Determining Young’s and shear moduli of a rod-shaped object in an AFM bending test
https://doi.org/10.17586/2220-8054-2024-15-1-122-129
Abstract
The technique of AFM bending test of a suspended nanoobject has been improved. An analytical method has been created for calculating Young’s and shear moduli of object’s material based on data of such tests. In Timoshenko approximation, we consider problems of bending a beam one or both ends of which lie on elastic Winkler foundations. The obtained solutions are used to eliminate uncertainties in the calculation of elastic moduli that arise when the conditions of fixing an object (console or bridge) on the edges of a recess in the substrate are unknown.
About the Authors
A. A. AnkudinovRussian Federation
Alexander V. Ankudinov
Polytekhnicheskaya, 26, St. Petersburg, 194021
M. S. Dunaevskiy
Russian Federation
Mikhail S. Dunaevskiy
Polytekhnicheskaya, 26, St. Petersburg, 194021
A. A. Krasilin
Russian Federation
Andrei A. Krasilin
Polytekhnicheskaya, 26, St. Petersburg, 194021
M. M. Khalisov
Russian Federation
Maksim M. Khalisov – Ioffe Institute; Pavlov Institute of Physiology, Russian Academy of Sciences.
Polytekhnicheskaya, 26, St. Petersburg, 194021; Makarova emb., 6, St. Petersburg, 199034
E. K. Khrapova
Russian Federation
Ekaterina K. Khrapova
Polytekhnicheskaya, 26, St. Petersburg, 194021
References
1. Binnig G., Quate C.F., Gerber Ch. Atomic Force Microscope. Phys. Rev. Lett., 1986, 56(9), P. 930–933.
2. Bhushan B. Nanotribology and Nanomechanics. An Introduction. Springer-Verlag, Berlin–Heidelberg, 2005, 928 p.
3. Salvetat J.-P., Kulik A. J., Bonard J.-M., Briggs G., Andrew D., Sto¨ckli T., Me´te´nier K., Bonnamy S., Be´guin F., Burnham N. A., Forro´ L. Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes. Adv. Mater., 1986, 11(2), P. 161–165.
4. Cuenot S., Demoustier-Champagne S., Nysten B. Elastic Modulus of Polypyrrole Nanotubes. Phys. Rev. Lett., 1999, 85(8), P. 1690–1693.
5. Kis A. Mechanical properties of mesoscopic objects. // PhD Thesis. Lausanne, 2003, 166 p.
6. Gangadean D., McIlroy D.N., Faulkner B.E., Aston D.E. Winkler boundary conditions for three-point bending tests on 1D nanomaterials. Nanotechnology, 2010, 21(22), P. 225704.
7. Landau L.D., Lifshitz E.M. Theory of Elasticity. Pergamon Press, Oxford, 1970. 177 p.
8. Ankudinov A.V., Khalisov M.M. Contact Stiffness Measurements with an Atomic Force Microscope. Tech. Phys., 2020, 65(11), P. 1866–1872.
9. Mai W., Wang Zh.L. Quantifying the elastic deformation behavior of bridged nanobelts. Appl. Phys. Lett., 2006, 89(7), P. 073112.
10. Chen Yu., Dorgan B.L., McIlroy D.N., Eric Aston D. On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. J. Appl. Phys., 2006, 100(10), P. 104301.
11. Kluge D., Abraham F., Schmidt S., Schmidt H.-W., Fery A. Nanomechanical Properties of Supramolecular Self-Assembled Whiskers Determined by AFM Force Mapping. Langmuir, 2010, 26(5), P. 3020–3023.
12. Ankudinov A.V. A New Algorithm for Measuring the Young’s Modulus of Suspended Nanoobjects by the Bending-Based Test Method of Atomic Force Microscopy. Semiconductors, 2010, 53(14), P. 1891–1899.
13. Khalisov M.M., Lebedev V.A., Poluboyarinov A.S., Garshev A.V., Khrapova E.K., Krasilin A.A., Ankudinov A.V. Young’s modulus of phyllosilicate nanoscrolls measured by the AFM and by the in-situ TEM indentation. Nanosyst.: Phys. Chem. Math., 2021, 12(1), P. 118–127.
14. Krasilin A.A., Khalisov M.M., Khrapova E.K., Kunkel T.S., Kozlov D.A., Anuchin N.M., Enyashin A.N., Ankudinov A.V. Surface Tension and Shear Strain Contributions to the Mechanical Behavior of Individual Mg-Ni-Phyllosilicate Nanoscrolls. Part. Part. Syst. Charact., 2021, 38(12), P. 2100153.
15. Ankudinov A., Dunaevskiy M., Khalisov M., Khrapova E., Krasilin A. Atomic force microscopy bending tests of a suspended rod-shaped object: Accounting for object fixing conditions. Phys. Rev. E., 2021, 107(2), P. 025005.
16. Winkler E. Die Lehre von der Elastizita¨t und Festigkeit. Dominicus, Prague, 1867, 388 p.
17. Lekhnitskii S.G. Theory of Elasticity of an Anisotropic Body. Holden-Day, San Francisco, 1963, 404 p.
18. Ting T.C.T., Chen T. Poisson’s ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math., 2005, 58(1), P. 73–82.
19. Timoshenko S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. London Edinburgh Dublin Philos. Mag. J. Sci., 1921, 41(245), P. 744–746.
20. Cowper G.R. The Shear Coefficient in Timoshenko’s Beam Theory. J. Appl. Mech., 1966, 33(2), P. 335–340.
21. Ankudinov A.V., Khalisov M.M. Bending test of nanoscale consoles in atomic force microscope. Tech. Phys. Lett., 2022, 48(2), P. 21–24.
22. Khrapova E.K., Ugolkov V.L., Straumal E.A., Lermontov S.A., Lebedev V.A., Kozlov D.A., Kunkel T.S., Nomine´ A., Bruyere S., Ghanbaja J., Belmonte T., Krasilin A.A. Thermal behavior of Mg-Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation. ChemNanoMat, 2021, 7(3), P. 207–207.
23. Hutter J.L., Bechhoefer J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum., 1993, 64(7), P. 1868–1873.
24. Necˇas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Phys., 2012, 10(1), P. 181–188.
Review
For citations:
Ankudinov A.A., Dunaevskiy M.S., Krasilin A.A., Khalisov M.M., Khrapova E.K. Determining Young’s and shear moduli of a rod-shaped object in an AFM bending test. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):122-129. https://doi.org/10.17586/2220-8054-2024-15-1-122-129