Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Simulation and evaluation of perovskite solar cells utilizing various electron transport layers

https://doi.org/10.17586/2220-8054-2024-15-1-135-146

Abstract

Solar cells that contain perovskite have been a significant object for consideration within the field of solar energy, consistently enhancing their efficiency year by year. In our study, we devised a novel architectural configuration for a tin-based perovskite solar cell, incorporating FTO/ZnO/CH3NH3SnI3/Spiro-OMeTAD/Au. Our investigation into the working of this solar cell involved the utilization of the SCAPS-1D, a versatile tool tailored for the analysis of solar cell behavior. Through this simulation software, we explored different electrontransporting layer (ETL) materials and made adjustments to multiple parameters, including ETL and absorber layer thickness. The outcomes of our research produced promising results, showcasing significant enhancements in different solar cell parameters. These favorable findings underscore the growing allure and potential of perovskite solar cells within the realm of renewable energy. The reported CH3NH3SnI3-based PSCs provide a viable path to the implementation of environmentally benign, low-cost, and high-efficiency PSCs.

About the Authors

R. K. Shukla
Lucknow University
India

Physics Department, Lucknow University.

Lucknow-226007



A. Srivastava
Lucknow University
India

Anchal Srivastava – Physics Department, Lucknow University.

Lucknow-226007



S. Rani
Lucknow University
India

Shikha Rani – Physics Department, Lucknow University.

Lucknow-226007



N. Singh
Lucknow University
India

Nidhi Singh – Physics Department, Lucknow University.

Lucknow-226007



V. K. Dwivedi
Lucknow University
India

Vishnu Kumar Dwivedi – Physics Department, Lucknow University.

Lucknow-226007



S. Pandey
Lucknow University
India

Sharda Pandey – Physics Department, Lucknow University.

Lucknow-226007



N. Wadhwani
Lucknow University
India

Navina Wadhwani – Physics Department, Lucknow University.

Lucknow-226007



References

1. Richter A., Hermle M., Glunz S.W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt., 2013, 3, P. 1184– 1191.

2. Sharma P., Goyal P. Evolution of PV technology from conventional to nano-materials. Mater. Today Proc., 2020, 28, P. 1593–1597.

3. Crabtree G.W., Lewis N.S. Physics of sustainable energy, using energy efficiently and producing it renewably. Proceedings of the AIP Conference, Berkeley, CA, USA, 1–2 March 2008; Melville, NY, USA, American Institute of Physics, 2008.

4. Goetzberger A., Hebling C., Schock H.W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R. Rep., 2003, 40, P. 1–46.

5. Nayeripour M., Mansouri M., Orooji F., Waffenschmidt E., ed. Solar Cells. IntechOpen Limited. London, UK, 2020, P. 1–50.

6. Saga T., Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater., 2010, 2, P. 96–102.

7. Law M., Greene L.E., Johnson J.C., Saykally R., Yang P., Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4, P. 455–459.

8. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Tsutomu Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. of the American Chemical Society, 2009, 131 (17), P. 6050–6051.

9. Best Research-Cell Efficiency Chart. URL: https://www.nrel.gov/pv/cell-efficiency.html.

10. Lin C. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells with Efficiency Beyond 20. Front Chem., 2020, 8, P. 592.

11. Bhaskar Parida, Arjun Singh, Abdul Kareem Kalathil Soopy, Sambasivam Sangaraju, Madhulita Sundaray, Satrujit Mishra, Shengzhong (Frank) Liu, Adel Najar. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Adv. Sci., 2022, 9, 2200308.

12. Terry Chien-Jen Yang, Peter Fiala, Quentin Jeangros, Christophe Ballif. High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule, 2018, 2 (8), P. 1421–1436.

13. Julianna Panidi, Dimitra G. Georgiadou, Theresa Schoetz, Themis Prodromakis. Advances in Organic and Perovskite Photovoltaics Enabling a Greener Internet of Things. Adv. Funct. Mater., 2022, 32, 2200694.

14. Li W., Jiang Q., Yang J., Luo Y., Li X., Hou Y., Zhou S. Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer. Sol Energy Mater Sol Cells, 2017, 159, 143.

15. Ye T., Xing J., Petrovic➫ M., Chen S., Chellappan V., Subramanian G.S., Sum T.C., Liu B., Xiong Q., Ramakrishna S. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: an interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells, 2017, 163, 242.

16. Apostolopoulou A., Sygkridou D., Rapsomanikis A., Kalarakis A.N., Stathatos E. Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Sol Energy Mater Sol Cells, 2017, 166, 100.

17. Huang X., Hu Z., Xu J., Wang P., Wang L., Zhang J., Zhu Y. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells, 2017, 164, 87.

18. Amrit Kumar Mishra, Shukla R.K. Simulation of photovoltaic material (donor blends PTB7:PC70BM) polymer for solar cell application. Materials Today: Proceedings, 2021, 46 (6), P. 2288–2293.

19. Amrit Kumar Mishra, Shukla R.K. Effect of Humidity in the Perovskite Solar Cell. Materials Today: Proceedings, 2020, 29, P. 836–838.

20. Amrit Kumar Mishra, Shukla R.K. Fabrication and Characterization of Perovskite (CH3NH3PI3) Solar Cells. SN Applied Sciences, 2020, 2, 321.

21. Shukla R.K., Amrit Misra. Tuning of Perovskite material for Solar Cell Application. Int. J. of Latest Trends in Engineering and Technology, 2019, 13 (3), P. 28–33.

22. Decock K., Khelifi S., Burgelman M. Modelling multivalent defects in thin film solar cells. Thin Solid Films, 2011, 519, P. 7481–7484.

23. Burgelman M., Marlein J. Analysis of graded band gap solar cells with SCAPS. Proceedings of the 23rd European Photovoltaic Solar Energy Conference, 2008, Valencia, P. 2151–2155.

24. Verschraegen J., Burgelman M. Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films, 2007, 515, P. 6276–6279.

25. Yuxiang W., Juan L., Jian X., Yangyang D., Like H., Jian N., Hongkun C., Jianjun Z. Organic–inorganic hybrid CH3NH3PbI3 perovskite materials as channels in thin-film field-effect transistors. RSC Advances, 2016, 6, P. 16243–16249.

26. Sidra Khatoon, Vishwadeep Chakraborty, Satish Kumar Yadav, Sujata Diwakar, Jyotsna Singh, Rajendra Bahadur Singh. Simulation study of CsPbIxBr1−x and MAPbI3 heterojunction solar cell using SCAPS-1D. Solar Energy, 2023, 254, P. 137–157.

27. Rai N., Rai S., Singh P.K., et al. Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron, 2020, 31, P. 16269–16280.

28. Patel P.K. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Sci. Rep., 2021, 11, 3082.

29. Tiwari P., Alotaibi M.F., Al-Hadeethi Y., Srivastava V., Arkook B., Sadanand, Lohia P., Dwivedi D.K., Umar A., Algadi H., et al. Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer. Nanomaterials, 2022, 12, 2506.

30. Parvesh K. Deendyala, Shweta Dhakla, Harpreet, Sarvesh Kumar, Manish K. Kashyap. Suitability of LBSO/CuI as an Effective ETL/HTL for Perovskite Solar Cells: A Dry Lab Approach. Indian J. of Pure & Applied Physics, 2023, 61, P. 931–933.

31. Faiza Azri, Afak Meftah, Nouredine Sengouga, Amjad Meftah. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar Energy, 2019, 181, P. 372–378.

32. Medina J.C.Z., Andre´s E.R., Ru´ız C.M., Espinosa E.C., Yarce L.T., Galeazzi Isasmendi R., Trujillo R.R., Salgado G.G., Solis A.C., Caballero F.G.N. Numerical Simulation and Performance Optimization of a Solar Cell Based on WO3/CdTe Heterostructure Using NiO as HTL Layer by SCAPS 1D. Coatings, 2023, 13, 1436.

33. Raoui Y., Ez-Zahraouy H., Tahiri N., El Bounagui O., Ahmad S., Kazim S. Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Sol. Energy, 2019, 193, P. 948–955.

34. Zapukhlyak Z.R., Nykyruy L.I., Rubish V.M., Wisz G., Prokopiv V.V., Galushchak M.O., Lishchynskyy I.M., Katanova L.O., Yavorskyi R.S. SCAPS Simulation of ZnO/CdS/CdTe/CuO Heterostructure for Photovoltaic Application. Physics and Chemistry of Solid-State, 2020, 21 (4), P. 660–668.

35. Singh A.K., et al. Performance optimization of lead free-MASnI3 based solar cell with 27 % efficiency by numerical simulation. Opt. Mater., 2021, 117, 11193.

36. Hossain M.K., Rubel M.H.K., Toki G.F.I., Alam I., Rahman M.F., Bencherif H. Deep Insights into the Coupled Optoelectronic and Photovoltaic Analysis of Lead-Free CsSnI3 Perovskite-Based Solar Cell Using DFT Calculations and SCAPS-1D Simulations. ACS Omega, 2022, 7 (47), P. 43210–43230.


Review

For citations:


Shukla R.K., Srivastava A., Rani S., Singh N., Dwivedi V.K., Pandey S., Wadhwani N. Simulation and evaluation of perovskite solar cells utilizing various electron transport layers. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):135-146. https://doi.org/10.17586/2220-8054-2024-15-1-135-146

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)