Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Design of highly active NixCo1-xAl2O4 (x = 0:1 – 0:5) catalysts for the dry reforming of methane reaction

https://doi.org/10.17586/2220-8054-2025-16-1-30-43

Abstract

On the first step using co-precipitation method from Ni-, Co-, Al-containing solution a precipitates with a general composition of NixCo1-xAl2O4 (x = 0:1 – 0:5) were prepared. Calcination the obtained precipitates at 700 C in air makes the precursors of catalysts for DRM with a stable spinel-like framework in which nickel and cobalt species are homogeneously incorporated. Reduction of the precursors at 700 C in H2 and further work under reaction medium leads to formation of the active phase which represents by the ensembles of Ni–Co alloy nanoparticles located on the surface of nanostructured spinel. The effect of the catalysts composition on catalytic properties in DRM was investigated. The high and stable catalytic activity of representative samples in DRM conditions with extremely short contact time ( = 30 ms) due to the formation of 17 – 18 wt. % active phase which represents highly dispersed (3 – 4 nm) Ni–Co alloy nanoparticles stabilized on the spinel with nanocristalline structure.

About the Authors

A. A. Shutilov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Alexey A. Shutilov

Lavrentieva 5, Novosibirsk 630090



M. N. Simonov
Boreskov Institute of Catalysis SB RAS; Novosibirsk State University
Russian Federation

Mikhail N. Simonov

Lavrentieva 5, Novosibirsk 630090

Pirogova 2, Novosibirsk 630090



V. E. Fedorova
Boreskov Institute of Catalysis SB RAS
Russian Federation

Valeria E. Fedorova

Lavrentieva 5, Novosibirsk 630090



A. S. Marchuk
Novosibirsk State University
Russian Federation

Alexander S. Marchuk

Pirogova 2, Novosibirsk 630090



I. P. Prosvirin
Boreskov Institute of Catalysis SB RAS
Russian Federation

Igor P. Prosvirin

Lavrentieva 5, Novosibirsk 630090



G. A. Zenkovets
Boreskov Institute of Catalysis SB RAS
Russian Federation

Galina A. Zenkovets

Lavrentieva 5, Novosibirsk 630090



References

1. Alipour Z., Borugadda V.B.,Wang H., Dalai A.K. Syngas production through dry reforming: A review on catalysts and their materials, preparation methods and reactor type. Chemical Engineering J., 2023, 452, 139416.

2. Yentekakis I.V., Panagiotopoulou P., Artemakis G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Appl. Catal. B: Environ., 2021, 296, 120210.

3. Zhang G., Liu J., Xu Y., Sun Y. A review of CH4 CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). Int. J. Hydrogen Energy, 2018, 43, P. 15030–15054.

4. Yentekakis I.V., Goula G., Hatzisymeon M., Betsi-Argyropoulou I., Botzolaki G., Kousi K., Kondarides D.I., Taylor M.J., Parlett C.M.A., Osatiashtiani A., Kyriakou G., Holgado J.P., Lambert R.M. Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane. Appl. Catal. B: Environ., 2019, 243, P. 490–501.

5. Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Shahul Hamid M.Y. A review on catalyst development for dry reforming of methane to syngas: recent advances. Renewable Sustainable Energy Rev., 2019, 108, P. 175–193.

6. Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science, 2020, 367, P. 777–781.

7. Pakhare D., Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev., 2014, 43, P. 7813–7837.

8. Su B., Wang Y., Xu Z., Han W., Jin H., Wang H. Novel ways for hydrogen production based on methane steam and dry reforming integrated with carbon capture. Energy Convers. Manag., 2022, 270, 116199.

9. Yentekakis I.V., Goula G. Biogas management: advanced Utilization for Production of renewable energy and added-value chemicals. Front. Environ. Sci., 2017, 5, P. 7–18.

10. Tsoukalou A., Imtiaze Q., Kim S.M., Abdala P.-M., Yoon S., Muller C.-R. Dry-reforming of methane over bimetallic Ni–M/La2O3 (M = Co, Fe): The effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. J. Catal., 2016, 343, P. 208–214.

11. Bitters J.S., He T., Nestler E., Senanayake S.D., Chen J.G., Zhang C. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. J. of Energy Chemistry, 2022, 68, P. 124–142.

12. Sharifianjazi F., Esmaeilkhanian A., Bazli L., Eskandarinezhad S., Khaksar S., Shafiee P., Yusuf M., Abdullah B., Salahshour P., Sadeghi F. A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts. Int. J. Hydrog. Energy, 2022, 47, P. 42213–42233

13. Rezaei M., Alavi S.M., Sahebdelfar S., Yan Z.F. Syngas production by methane reforming with carbon dioxide on noble metal catalysts. J. Nat. Gas. Chem., 2006, 15, P. 327–334.

14. Barama S., Dupeyrat-Batiot C., Capron M., Bordes-Richard E., Bakhti-Mohammedi O., Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal. Today, 2009, 141, P. 385–392.

15. Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriquez-Ramos I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. Appl. Catal. A: Gen., 1998, 170, P. 177–187.

16. Goula M.A., Charisiou N.D., Siakavelas G., Tzounis L., Tsiaoussis I., Panagiotopoulou P., Goula G., Yentekakis I.V. Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts. Int. J. Hydrog. Energy, 42, P. 13724–13740.

17. Le Sach´e E., Pastor-P´erez L., Watson D., Sep´ulveda-Escribano A., Reina T.R. Ni stabilised on inorganic complex structures: superior catalysts for chemical CO2 recycling via dry reforming of methane. Appl. Catal. B: Environ., 2018, 236, P. 458–465.

18. Serrano-Lotina A., Daza L. Long-term stability test of Ni-based catalyst in carbon dioxide reforming of methane. Appl. Catal. A Gen., 2014, 474, P. 107–113.

19. Li X., Li D., Tian H., Zeng L., Zhao Z.-J., Gong J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B: Environ., 2017, 202, P. 683–694.

20. Stroud T., Smith T.J., Le Sach´e E., Santos J.L., Centeno M.A., Arellano-Garcia H., Odriozola J.A., Reina T.R. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Catal. B: Environ., 2018, 224, P. 125–135.

21. Makri M.M., Vasiliades M.A., Petallidou K.C., Efstathiou A.M., Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5 wt % Ni/Ce1􀀀xMxO2􀀀 (M = Zr4+, Pr3+) catalysts. Catal. Today, 2015, 259, P. 150–164.

22. Zhang W.D., Liu B.S., Tian Y.L. CO2 reforming of methane over Ni/Sm2O3-CaO catalyst prepared by a sol–gel technique. Catal. Comm., 2007, 8, P. 661–667.

23. Amin M.H., Mantri K., Newnham J., Tardio J., Bhargava S.K. Highly stable ytterbium promoted Ni/ -Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B: Environ., 2012, 119, P. 217–226.

24. Zhang F., Liu Z., Zhang S., Akter N., Palomino R.M., Vovchok D., Orozco I., Salazar D., Rodriguez J.A., Llorca J., Lee J., Kim D., XuW., Frenkel A.I., Li Y., Kim T., Senanayake S.D. In situ elucidation of the active state of Co–CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt. ACS Catal., 2018, 8, P. 3550–3560.

25. Fakeeha A.H., Al Fatesh A.S., Ibrahim A.A., Kurdi A.N., Abasaeed A.E. Yttria modified ZrO2 supported Ni catalysts for CO2 reforming of methane: the role of Ce promoter. ACS Omega, 2021, 6, P. 1280–1288.

26. Kim S.M., Abdala P.M., Margossian T., Hosseini D., Foppa L., Armutlulu A., van BeekW., Comas-Vives A., Cop´eret C.,M¨uller C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc., 2017, 139, P. 1937–1949.

27. Kurlov A., Deeva E.B., Abdala P.M., Lebedev D., Tsoukalou A., Comas-Vives A., Fedorov A., Muller C.R. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat. Comm., 2020, 11, 4920.

28. Sengupta S., Ray K., Deo G. Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions. Int. J. Hydrog. Energy, 2014, 39, P. 11462–11472.

29. Gonzalez-delaCruz V.M., Pereniguez R., Ternero F., Holgado J.P., Caballero A. In situ XAS study of synergic effects on Ni–Co/ZrO2 methane reforming catalysts. J. Phys. Chem. C., 2012, 116, P. 2919–2926.

30. Son I.H., Lee S.J., Roh H-S. Hydrogen production from carbon dioxide reforming of methane over highly active and stable MgO promoted Co-Ni/-Al2O3 catalyst. Int. J. Hydrog. Energy, 2014, 39, P. 3762–3770.

31. Xu J., ZhouW., Li Z.,Wang J., Ma J. Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int. J. Hydrog. Energy, 2009, 34, P. 6646–6654.

32. Foo S.Y., Cheng C.K., Nguyen T-H., Adesina A.A. Oxidative CO2 reforming of methane on alumina-supported Co–Ni catalyst. Ind. Eng. Chem. Res., 2010, 49, P. 10450–10458.

33. Fan M-S., Abdullah A.Z., Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO-ZrO2: preparation, characterization and activity studies. Appl. Catal. B: Environ., 2010, 100, P. 365–377.

34. Halliche D., Bouarab R., Cherifi O., Bettahar M.M. Carbon dioxide reforming of methane on modified Ni/-Al2O3 catalysts. Catal. Today, 1996, 29, P. 373–377.

35. San-Jose-Alonso D., Illan-Gomez M.J., Roman-Mart{nez M.C. Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane. Int. J. Hydrog. Energy, 2013, 38, P. 2230–2239.

36. Wu Z., Yang B., Miao S., Liu W., Xie J., Lee S.,. Pellin M.J, Xiao D., Su D., Ma D. Lattice strained Ni–Co alloy as a high-performance catalyst for catalytic dry reforming of methane. ACS Catal., 2019, 9, P. 2693–2700.

37. San-Joze-Alonso D., Juan-Juan J., Illan-Gomez M.J., Roman-Martinez M.C. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl. Catal. A: Gen., 2009, 371, P. 54–59.

38. Kumari R., Sengupta S. Catalytic CO2 reforming of CH4 over MgAl2O4 supported Ni–Co catalysts for the syngas production. Int. J. Hydrog. Energy, 2020, 45, P. 22775–22787.

39. Li H., Shin K., Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys., 2018, 149, 174705.

40. Khairudin N.F., Mohammadi M., Mohamed A.R. An investigation on the relationship between physicochemical characteristics of aluminasupported cobalt catalysts and its performance in dry reforming of methane. Environ. Sci. Pollut. Control Ser., 2021, 28 (23), P. 29157–29176.

41. Dekkar S., Tezkratt S., Sellam D., Ikkour K., Parkhomenko K., Martinez-Martin A., Roger A.C. Dry reforming of methane over Ni–Al2O3 and Ni–SiO2 catalysts: role of preparation methods. Catal. Lett., 2020, 150, P. 2180–2199.

42. TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data – User’s Manual; Bruker AXS: Karlsruhe, Germany, 2008; Available online: (http://algol.fis.uc.pt/jap/TOPAS %204-2 %20Users %20Manual.pdf (accessed on 8 May 2020))

43. Database: Inorganic Crystal Structure Database, ICSD. In Release 2008. Fashinformationszentrum Karsruhe D #8211 1754 Eggenstein #8211 Leopoldshafen, Germany, 2008.

44. Moudler J., Stickle W., Sobol P., Bomben K., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp.: Eden. Prairie, MN, 1992.

45. Scofield J.H., J. Electron Spectrosc. Relat. Phenom., 1976, 8, P. 129–137.

46. Kwok R. Free, fully featured, software for the analysis of XPS spectra. November 25, 2023, http://xpspeak.software.informer.com/4.1/ .

47. Ji Y., Zhao Z., Duan A., Jiang G., Liu J. Comparative study on the formation and reduction of bulk and Al2O3-supported cobalt oxides by H2-TPR technique. Phys. Chem. C, 2009, 113, P. 7186–7199.

48. Andonova S., de Avila C.N., Arishtirova K., Bueno J.M.C., Damyanova S. Structure and redox properties of Co promoted Ni/Al2O3 catalysts for oxidative steam reforming of ethanol. Appl. Catal. B: Environ., 2011, 105, P. 346–360.

49. Wang R., Li Y., Shi R., Yang M. Effect of metal-support interaction on the catalytic performance of Ni/Al2O3 for selective hydrogenation of isoprene. J. Mol. Catal. A: Chem., 2011, 344, P. 122–127.

50. Zhang H.J., Chen Z.Q.,Wang S.J. Spin conversion of positronium in NiO/Al2O3 catalysts observed by coincidence Doppler broadening technique. Phys. Rev. B, 2010, 82, 035439.

51. Gao Y., Qiao F., Hou W., Ma L., Li N., Shen C., Jin T., Xie K. Radiation effects on lithium metal batteries. The Innovation, 2024, 3, 100468.

52. Du J., Liu G., Li F., Zhu Y., Sun Iron–Salen L. Complex and Co2+ Ion-Derived Cobalt–Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution. Electrocatalyst. Adv. Sci., 2019, 6, 1900117.

53. Li C., Li S., Zhao J., Sun M., Wang W., Lu M., Qu A., Hao C., Chen C., Xu C., Kuang H., Xu L. Ultrasmall Magneto-chiral Cobalt Hydroxide Nanoparticles Enable Dynamic Detection of Reactive Oxygen Species in Vivo. JACS, 2022, 144, P. 1580–1588.

54. Cano A.M., Marquardt A.E., DuMont J.W., George S.M. Effect of HF Pressure on Thermal Al2O3 Atomic Layer Etch Rates and Al2O3 Fluorination. J. Phys. Chem. C, 2019, 123, P. 10346–10355.

55. Huang L., Xiong K., Wang X., He X., Yu L., Fu C., Zhu X., Feng W. The Mechanism of Oxide Growth on Pure Aluminum in Ultra-High- Temperature Steam. Metals, 2022, 12, 1049

56. Misture S.T., McDevitt K.M., Glass K.C., Edwards D.D., Howe J.Y., Rector K.D.,H. He, Vogel S.C., Sulfur-resistant and regenerable Ni/Co spinel-based catalysts for methane dry reforming. Catal. Sci. Technol., 2015, 5, P. 4565–4574.

57. Li B., Luo Y., Li B., Yuan X., Wang X. Catalytic performance of iron-promoted nicel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane. Fuel Process. Technol., 2019, 193, P. 348–360.

58. Alipour Z., Rezaei M., Meshkani F. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane. Fuel, 2014, 129, P. 197–203.


Review

For citations:


Shutilov A.A., Simonov M.N., Fedorova V.E., Marchuk A.S., Prosvirin I.P., Zenkovets G.A. Design of highly active NixCo1-xAl2O4 (x = 0:1 – 0:5) catalysts for the dry reforming of methane reaction. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):30-43. https://doi.org/10.17586/2220-8054-2025-16-1-30-43

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)