Phase transformations in perovskites La0:6Ca0:4Mn1-yCoyO3±δ under the action of hydrogen
https://doi.org/10.17586/2220-8054-2025-16-1-51-57
Abstract
The structural and phase transformations of La0:6Ca0:4Mn1-yCoyO3±δ (y = 0:2 – 0:6) solid solutions in a reducing atmosphere were studied using in situ XRD and HRTEM methods. Experiments have shown that heat treatment in a reducing atmosphere of H2 leads to the partial decomposition of solid solutions, the nature of which differs from decomposition in an inert atmosphere. In the case of a system with a hydrogen-containing atmosphere, the heterogeneous reduction of the structure leads to the formation of an orthorhombic phase of LaMnO3-based perovskite with disordered vacancies, an additional phase of ordered Rudlesden–Poppertype perovskite based on La2CoO4 and Co and Ca2MnO4 nanoparticles on the surface of perovskite. In an environment with excessive partial oxygen pressure for the reduced sample, the reverse phase transition of the Rudlesden–Popper phase into the perovskite phase occurs.
Keywords
About the Authors
A. V. KapishnikovRussian Federation
Alexander V. Kapishnikov
Lavrentieva Ave, 5, Novosibirsk, 630090
E. Yu. Gerasimov
Russian Federation
Evgeny Yu. Gerasimov
Lavrentieva Ave, 5, Novosibirsk, 630090
References
1. XiaW., Pei Z., Leng K., Zhu X. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Research Letters, 2020, 15 (1), 9.
2. Zhu J., Li H., Zhong L., Xiao P., Xu X., Yang X., Zhao Z., Li J. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catalysis, 2014, 4 (9), P. 2917–2940.
3. Grabowska E. Selected perovskite oxides: Characterization, preparation and photocatalytic properties-A review. Applied Catalysis B: Environmental, 2016, 186, P. 97–126.
4. Bashan V., Ust Y. Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation. Int. J. of Energy Research, 2019, 43 (14), P. 7755–7789.
5. Najjar H., Batis H. Development of Mn-based perovskite materials: Chemical structure and applications. Catalysis Reviews, 2016, 58 (3), P. 371–438.
6. Keav S., Matam S., Ferri D., Weidenkaff A., Keav S., Matam S.K., Ferri D., Weidenkaff A. Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review. Catalysts, 2014, 4 (3), P. 226–255.
7. Khaledian H.R., Zolfaghari P., Nezhad P.D.K., Niaei A., Khorram S., Salari D. Surface modification of LaMnO3 perovskite supported on CeO2 using argon plasma for high-performance reduction of NO. J. of Environmental Chemical Engineering, 2021, 9 (1), 104581.
8. Shen Q., Dong S., Li S., Yang G., Pan X. A Review on the Catalytic Decomposition of NO by Perovskite-Type Oxides. Catalysts, 2021, 11 (5), 622.
9. Wu Y., Liu H., Li G., Jin L., Li X., Ou X., Dong L., Jin G., Li B. Tuning composition on B sites of LaM0:5Mn0:5O3 (M = Cu, Co, Fe, Ni, Cr) perovskite catalysts in NOx efficient reduction. Applied Surface Science, 2020, 508, 145158.
10. Afify M.S., Faham M.M.E., Eldemerdash U., El-Dek S.I., Rouby W.M.A.E. Effects of Ag doping on LaMnO3 photocatalysts for photoelectrochemical water splitting. Applied Physics A: Materials Science and Processing, 2022, 128 (10), P. 1–12.
11. Jawhari A.H., Hasan N., Radini I.A., Narasimharao K., Malik M.A. Noble Metals Deposited LaMnO3 Nanocomposites for Photocatalytic H2 Production. Nanomaterials, 2022, 12 (17), 2985.
12. Kida T., Guan G., Yoshida A. LaMnO3/CdS nanocomposite: a new photocatalyst for hydrogen production from water under visible light irradiation. Chemical Physics Letters, 2003, 371 (5–6), P. 563–567.
13. Garba Z.N., Zhou W., Zhang M., Yuan Z. A review on the preparation, characterization and potential application of perovskites as adsorbents for wastewater treatment. Chemosphere, 2020, 244, 125474.
14. Yi˘giter ˙I.E., Pis¸kin B. Investigation into Ca-Doped LaMnCoO3 Perovskite Oxides for Thermochemical Water Splitting. JOM, 2022, 74 (12), P. 4682–4694.
15. Kwon O., Kim Y.I., Kim K., Kim J.C., Lee J.H., Park S.S., Han J.W., Kim Y.-M., Kim G., Jeong H.Y. Probing One-Dimensional Oxygen Vacancy Channels Driven by Cation–Anion Double Ordering in Perovskites. Nano Letters, 2020, 20 (11), P. 8353–8359.
16. Gan L.-Y., Akande S.O., Schwingenschl¨ogl U. Anisotropic O vacancy formation and diffusion in LaMnO3. J. Mater. Chem. A, 2014, 2 (46),
17. Zheng J., Zhao H., Guo X., Jin X.,Wang L., Dong S., Chen J. Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping. Coatings, 2023, 14, 20.
18. Yin X., Zhang R., Zhang Y., Wang S., Shen L. Enhanced reactivity of methane partial oxidation of nickel doped LaMnO3+ perovskites for chemical looping process. Int. J. of Hydrogen Energy, 2024, 71, P. 481–492.
19. Politov B.V., Shalamova A.M., Shein I.R., Suntsov A.Y. Exploring oxygen non-stoichiometry in presumably stoichiometric double perovskites: the case study for LaCu0:5Mn0:5O3-. Acta Materialia, 2023, 250, 118872.
20. Vieten J., Bulfin B., Huck P., Horton M., Guban D., Zhu L., Lu Y., Persson K.A., Roeb M., Sattler C. Materials design of perovskite solid solutions for thermochemical applications. Energy & Environmental Science, 2019, 12 (4), P. 1369–1384.
21. Liu X., Wang S., Liao Y., Lei M., Fang X., Xu X., Wang X. La/Mn molar ratio tuning the activity of La–Mn perovskites for CO and propane oxidation. J. of the Energy Institute, 2024, 114, 101595.
22. Zhao A., Ren Y., Wang H., Qu Z. Enhancement of toluene oxidation performance over La1-CoO3- perovskite by lanthanum non-stoichiometry. J. of Environmental Sciences, 2023, 127, P. 811–823.
23. Jiang Y., Li Z., Zhu T., Li D., Wang H., Zhu X. Oxygen Storage Characteristics and Redox Behaviors of Lanthanum Perovskite Oxides with Transition Metals in the B-Sites. Energy & Fuels, 2023, 37 (13), P. 9419–9433.
24. Mantzavinos D. Oxygen stoichiometries in La1-xSrxCo1-yFeyO3- perovskites at reduced oxygen partial pressures. Solid State Ionics, 2000, 134 (1–2), P. 103–109.
25. Nadeev A.N., Tsybulya S.V., Gerasimov E.Y., Isupova L.A. High-temperature phase transitions in the La0:25Sr0:75FeO3- solid solution with a perovskite structure. J. of Structural Chemistry, 2009, 50, P. 108–113.
26. Gerasimov E.Yu., Rogov V.A., Prosvirin I.P., Isupova L.A., Tsybulya S.V. Microstructural Changes in La0:5Ca0:5Mn0:5Fe0:5O3 Solid Solutions under the Influence of Catalytic Reaction of Methane Combustion. Catalysts, 2019, 9, 563.
27. Kapishnikov A.M., Bespalko Yu.N., Shuvarakova E.I., Tsybulya S.M., Isupova L.A., Gerasimov E.Yu. Influence of Oxygen Nonstoichiometry on the Structural Stability of La1{xCaxMn0:5Co0:5O3 Complex Oxides (x = 0:2 – 0:6) Subjected to Heat Treatment in He. J. of Structural Chemistry, 2024, 65, P. 107–116.
28. Isupova L.A., Gerasimov E.Yu., Zaikovskii V.I., Tsybulya S.V. Effect of the reaction medium on the structure of the La1-xCaxMnO3 (x = 0 – 1) solid solutions prepared by the pechini method. Kinetics and Catalysis, 2011, 52, P. 104–110.
29. Flores-Lasluisa J.X., Huerta F., Cazorla-Amorys D., Morallyn E. Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. J. of Colloid and Interface Science, 2019, 556, P. 658–666.
Review
For citations:
Kapishnikov A.V., Gerasimov E.Yu. Phase transformations in perovskites La0:6Ca0:4Mn1-yCoyO3±δ under the action of hydrogen. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):51-57. https://doi.org/10.17586/2220-8054-2025-16-1-51-57