Наноструктурированные прозрачные литиевоалюмосиликатные ситаллы, содержащие ионы Fe2+, с регулируемыми оптическими свойствами: влияние режимов термообработки на поглощение в ИК области спектра
https://doi.org/10.17586/2220-8054-2025-16-1-58-66
Аннотация
В работе исследована оптическая настройка наноструктурированных прозрачных литиевоалюмосиликатных ситаллов, содержащих диоксид титана в качестве нуклеатора кристаллизации и допированных ионами Fe²⁺. Стекло было сварено при температуре 1620 °C и термообработано в интервале температур 660 °C - 800 °C, в результате были выделены нанокристаллы γ-Al₂O₃ (2–23 нм) и твердых растворов β-кварца (8–40 нм). Ионы Fe²⁺ в октаэдрической координации в исходном стекле отвечают за поглощение в диапазоне 1000–1400 нм. Тетраэдрически координированные ионы Fe²⁺ в нанокристаллах γ-Al₂O₃ отвечают за поглощение в диапазоне 1550–2300 нм. Кристаллизация твердых растворов β-кварца приводит к уменьшению доли γ-Al₂O₃ и соответствующему уменьшению поглощения в области 1550–2300 нм. Дифференциальная сканирующая калориметрия, сканирующая электронная микроскопия, рентгеновская дифракция, спектроскопия комбинационного рассеяния света и оптическая спектроскопия выявляют взаимосвязь между режимами термообработки, развитием кристаллической фазы и оптическими характеристиками, подчеркивая потенциал ситаллов литиевоалюмосиликатной системы, легированных ионами Fe²⁺, для передовых фотонных приложений. Ситаллы демонстрирует настраиваемые оптические свойства, идеально подходящие для насыщающихся поглотителей лазеров с пассивной модуляцией добротности.
Об авторах
К. А. ТрухановаРоссия
О. С. Дымшиц
Россия
И. П. Алексеева
Россия
К. В. Богданов
Россия
С. С. Запалова
Россия
М. И. Теневич
Россия
А. К. Бачина
Россия
В. И. Попков
Россия
А. А. Жилин
Россия
Список литературы
1. Method of Making Ceramics and Product Thereof. Method of Making Ceramics and Product Thereof: patent 2920971 U.S. Stookey, S.D. January 12, 1960.
2. Bach H., Krause D. Low Thermal Expansion Glass Ceramics, Springer-Verlag Berlin Heidelberg, 2005, 246 p.
3. H¨oland W., Beall G.H. Glass-Ceramic Technology, Wiley: Hoboken, NJ, USA, 2012, 414 p.
4. Zanotto E.D. A bright future for glass-ceramic. Am Ceram Soc Bull., 2010, 89 (8), P. 19–27.
5. Venkateswaran C., Sreemoolanadhan H., Vaish R. Lithium aluminosilicate (LAS) glass-ceramics: a review of recent progress. Int. Mater. Rev., 2022, 67 (6), P. 620–657.
6. Zandona A., Patzig C., R¨udinger B., Hochrein O., Deubener J. TiO2(B) nanocrystals in Ti-doped lithium aluminosilicate glasses. J. Non-Cryst. Solids, 2019, 2, 100025.
7. Fernandez-Martin C., Bruno G., Crochet A., Ovono D.O., Comte M., Hennet L. Nucleation and growth of nanocrystals in glass-ceramics: an in situ SANS perspective. J. Am. Ceram. Soc., 2012, 95 (4), P. 1304–1312.
8. Glatz P., Comte M., Montagne L., Doumert B., Cousin F., Cormier L. Structural evolution at short and medium range distances during crystallization of a P2O5–Li2O–Al2O3–SiO2 glass. J. Am. Ceram. Soc., 2020, 103 (9), P. 4969–4982.
9. Vigier M., Deniard P., Gautron E., Gautier N., Genevois C., Ory S., Allix M., Kacem I.B., Jobic S. Microstructural insights on lithium aluminum silicate (LAS) glass ceramics. Ceram. Int., 2024, 50 (16), P. 29011–29015.
10. Kleebusch E., Patzig C., Krause M., Hu Y., H¨oche T., R¨ussel C. The effect of TiO2 on nucleation and crystallization of a Li2O–Al2O3–SiO2 glass investigated by XANES and STEM. Sci. Rep., 2018, 8, 2929.
11. Kleebusch E., Patzig C., H¨oche T., R¨ussel C. The evidence of phase separation droplets in the crystallization process of a Li2O–Al2O3–SiO2 glass with TiO2 as nucleating agent – An X-ray diffraction and (S)TEM-study supported by EDX-analysis. Ceram. Int., 2018, 44, P. 2919–2926.
12. Naumov A.S., Shakhgildyan G.Y., Golubev N.V., Lipatiev A.S., Fedotov S.S., Alekseev R.O., Ingat’eva E.S., Savinkov V.I., Sigaev V.N. Tuning the coefficient of thermal expansion of transparent lithium aluminosilicate glass-ceramics by a two-stage heat treatment. Ceram., 2023, 7 (1), P. 1–14.
13. Raghuwanshi V.S., R¨ussel C., Hoell A., Crystallization of ZrTiO4 nanocrystals in lithium-alumino-silicate glass ceramics: anomalous small-angle X-ray scattering investigation. Cryst. Growth Des., 2014, 14 (6), P. 2838–2845.
14. H¨oche T., Patzig C., Gemming T., Wurth R., R¨ussel C, Avramov I., Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia aluminosilicate glass-ceramics. Cryst. Growth Des., 2012, 12 (3), P. 1556–1563.
15. Zheng T., Li M.H., Ma Y.P., Jiang H. Kinetic analysis of the crystallization of Y2O3 and La2O3 doped Li2O–Al2O3–SiO2 glass. RSC Adv., 14 (10), P. 7052–7060.
16. Li B., Wang S., Fang Y. Effect of Cr2O3 addition on crystallization, microstructure and properties of Li2O–Al2O3–SiO2 glass-ceramics. J. Alloys Compd., 2017, 693, P. 9–15.
17. Lilensten L., Fu Q., Wheaton B.R., Credle A.J., Stewart R.L., Kohli J.T. Kinetic study on lithium-aluminosilicate (LAS) glass-ceramics containing MgO and ZnO. Ceram Int., 2014, 40 (8 PART A), P. 11657–11661.
18. Alekseeva I.P., Dymshits O.S., Tsenter, M.Y., Zhilin A.A. Influence of various alkali and divalent metal oxides on phase transformations in NiO-doped glasses of the Li2O–Al2O3–SiO2–TiO2 system. J. Non-Cryst. Solids, 2011, 357, P. 2209-2214.
19. Dymshits O., Bachina A., Alekseeva I., Golubkov V., Tsenter M., Zapalova S., Bogdanov K., Danilovich D., Zhilin A. Phase transformations upon formation of transparent lithium alumosilicate glass-ceramics nucleated by yttrium niobates. Ceram., 2023, 6, P. 1490–1507.
20. Sun T., Zheng C., Zhang F., Zhang J., Han J., Xie J., He J., Jiang H. Mixed CaO/MgO effect on microstructure, mechanical properties and crystallization behaviour of Li2O–Al2O3–SiO2–ZrO2–P2O5 glass. J. Non-Cryst. Solids, 2023, 616, 122457.
21. Guo Y., Wang J., Ruan J., Han J., Xie J., Liu C. Microstructure and ion-exchange properties of glass-ceramics containing ZnAl2O4 and -quartz solid solution nanocrystals, J. Eur. Ceram. Soc., 2021, 41 (10), P. 5331–5340.
22. Rao C.S., Rao M.C., Srikumar T. Optical absorption studies on lithium aluminosilicate glasses doped with low concentrations of WO3. Int. J. Chemtech Res., 2014, 6 (7), P. 3935–3938.
23. Dymshits O., Shepilov M., Zhilin A. Transparent glass-ceramics for optical applications. MRS Bull., 2017, 42, P. 200–205.
24. Dymshits O.S., Alekseeva I.P., Zhilin A.A., Tsenter M.Y., Loiko P.A., Skoptsov N.A., Malyarevich A.M., Yumashev K.V., Mateos X., Baranov A.V. Structural characteristics and spectral properties of novel transparent lithium aluminosilicate glass-ceramics containing (Er,Yb)NbO4 nanocrystals. J. Lumin., 2015, 160, P. 337–345.
25. Loiko P.A., Dymshits O.S., Alekseeva I.P., Zhilin A.A., Tsenter M.Y., Vilejshikova E.V., Yumashev K.V., Bogdanov K.V. Structure and spectroscopic properties of transparent glass-ceramics with (Eu3+,Yb3+):YNbO4 nanocrystals. J. Lumin., 2016, 179, P. 64–73.
26. Alekseeva I.P., Bobovich Y.S., Tsenter M.Y., Chuvaeva T.I. Raman spectra of glass ceramics belonging to the Li2O–Al2O3–SiO2–TiO2 system and the nature of the phases containing titanium. J. Appl. Spectrosc., 1981, 35, P. 1008–1012.
27. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9 (7), P. 671–675.
28. Lipson H., Steeple H., in: McMillan (Ed.), Interpretation of X-Ray Powder Patterns, Martins Press, London, N.Y., 1970, p. 344.
29. Ovono Ovono D., Berre S., Pradeau P., Comte M., Bruno G., Study of the crystallization kinetics of LAS glass by differential scanning calorimetry, X-ray diffraction, and beam bending viscometry. Thermochim. Acta, 2012, 527, P. 158–164.
30. Dymshits O.S., Zhilin A.A., Petrov V.I., Tsenter M.Ya., Chuvaeva T.I., Golubkov V.V. A Raman spectroscopic study of phase transformations in titanium-containing lithium aluminosilicate glasses. Glass Phys. Chem., 1998, 24, P. 79–96.
31. Eremeev K., Dymshits O., Alekseeva I., Khubetsov A., Zapalova S., Tsenter M., Basyrova L., Serres J.M., Mateos X., Loiko P., Popkov V., Zhilin A. Effect of redox conditions of glass melting on the structure and the properties of titanium-containing gahnite glass-ceramics. J. Eur. Ceram. Soc., 2024, 44, P. 3362–3380.
32. Alekseeva I.P., Belyaevskaya N.M., Bobovich Ya.S., Tsenter M.Ya., Chuvaeva T.I. Recording, interpretation, and some examples of application of Raman spectra for glass ceramics activate with titanium (IV) oxide. Opt. Spectrosc., 1978, 45, P. 927–936.
33. Sprengard R., Binder K., Brandle M., Fotheringham U., Sauer J., Pannhorst W. On the interpretation of the experimental Raman spectrum of -eucryptite LiAlSiO4 from atomistic computer modeling. J. Non-Cryst. Solids, 2000, 274, P. 264–270.
34. Shirasuka K., Yanagida H., Yamaguchi G. The preparation of -alumina and its structure. Mater. Sci., 1976, 84, P. 610–613.
35. Basyrova L., Bukina V., Balabanov S., Belyaev A., Drobotenko V., Dymshits O., Alekseeva I., Tsenter M., Zapalova S., Khubetsov A., Zhilin A., Volokitina A., Vitkin V., Mateos X., Serres J.M., Camy P., Loiko P. Synthesis, structure and spectroscopy of Fe2+:MgAl2O4 transparent ceramics and glass-ceramics. J. Lumin., 2021, 236, 118090.
Рецензия
Для цитирования:
Труханова К.А., Дымшиц О.С., Алексеева И.П., Богданов К.В., Запалова С.С., Теневич М.И., Бачина А.К., Попков В.И., Жилин А.А. Наноструктурированные прозрачные литиевоалюмосиликатные ситаллы, содержащие ионы Fe2+, с регулируемыми оптическими свойствами: влияние режимов термообработки на поглощение в ИК области спектра. Наносистемы: физика, химия, математика. 2025;16(1):58-66. https://doi.org/10.17586/2220-8054-2025-16-1-58-66
For citation:
Trukhanova K.A., Dymshits O.S., Alekseeva I.P., Bogdanov K.V., Zapalova S.S., Tenevich M.I., Bachina A.K., Popkov V.I., Zhilin A.A. Nanostructured transparent Fe2+-doped lithium aluminosilicate glass-ceramics with tunable optical properties: effect of heat-treatment regimes on near-infrared absorption. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):58-66. https://doi.org/10.17586/2220-8054-2025-16-1-58-66