Application of the numerical model of temperature-dependent thermal conductivity in Ca1-xYxF2+x heterovalent solid solution nanocomposites
https://doi.org/10.17586/2220-8054-2025-16-1-67-73
Abstract
A series of Ca1-xYxF2+x solid solution x = 0:0005, 0:003, 0:007, 0:013, 0:02, 0:03, 0:04 single crystals were grown using the Bridgman method. The thermal conductivity of single crystals was measured using the absolute method of longitudinal heat flow in the range of 50 – 300 K. With an increase in the concentration of yttrium fluoride in the solid solution, a transition is observed from the temperature dependence characteristic of single crystals to a monotonically increasing one with increasing temperature, which is characteristic of disordered media. This behavior is associated with the scattering of phonons on nanosized clusters of defects present in the solid solution. Within the framework of a two-component model, including a superposition of thermal resistance coefficients from ordered and disordered media, a system of equations was obtained that provides a quantitative description of the experiment.
About the Authors
P. A. PopovRussian Federation
Pavel A. Popov
14 Bezhitskaya str., Bryansk, 241036
A. V. Shchelokov
Russian Federation
Alexandr V. Shchelokov
14 Bezhitskaya str., Bryansk, 241036
V. A. Konyushkin
Russian Federation
Vasilii A. Konyushkin
38 Vavilova str., Moscow, 119991
A. N. Nakladov
Russian Federation
Andrey N. Nakladov
38 Vavilova str., Moscow, 119991
P. P. Fedorov
Russian Federation
Pavel P. Fedorov
38 Vavilova str., Moscow, 119991
References
1. Vogt T. Uber die Flusspat – Yttriumfluoritgruppe. Neues Jahrb. Mineral, 1914, 2 (1), P. 9–15.
2. Sobolev B.P. The Rare Earth Trifluorides. P. 1. The high temperature chemistry of the rare earth trifluorides. Barcelona, Institut d’Estudis Catalans, 2000.
3. Goldschmidt V.M., Barth T., Lunde G., Zachariasen W. Geochemische Verteilungsgesetze der Elemente, VII, Skrift Norske Vid. Acad. Oslo, I, Mat.-Nat. Klasse, 1926, 1 (2), S. 1–117.
4. Bokii G.B. Kristallokhimiya (Crystal Chemistry). M.: Nauka, 1971. (in Russian)
5. Filatov S.K., Krivovichev S.V., Bubnova R.S. Obschaya kristallokhimiya (General Crystal Chemistry). St. Petersburg: Izd. SPbGU, 2018. (in Russian)
6. Hahn H., Seemann W., Kohn H.-L. Zur Mischkristallbildung in den Systemen CaF2/YF3, CaF2/LaF3, SrF2/LaF3 und BaF2/LaF3. Zeitschrift f¨ur anorganische und allgemeine Chemie, 1969, 369 (1–2), P. 48–58.
7. Alexandrov V.B., Garashina L.S. New data on the structure of CaF2-TRF3 solid solutions. Dokl. Akad. Nauk USSR, 1969, 189 (2), P. 307–310. (in Russian)
8. Fedorov P.P. , Izotova O.E., Alexandrov V.B., Sobolev B.P. New phases with fluorite-derived structure in CaF2–(Y, Ln)F3 systems. J. Solid State Chem., 1974, 9 (4), P. 368–374.
9. Osiko V.V., Prokhorov A.M. Investigation of the structure of crystals with an admixture of rare earth elements by spectroscopic methods. In: Problems of modern crystallography, M.: Nauka, 1975, P. 280–301.
10. Cheetham A.K., Fender B.E.F., Steele D., Taylor R.I., Willis B.T.M. Defect structure of fluorite compounds containing excess anions. Solid State Comm., 1970, 8, P. 171–173.
11. Cheetham A.K., Fender B.E.F., Cooper M.J. Defect structure of calcium fluoride containing excess anions: Bragg scattering. J. Phys. C.: Solid State Phys., 1971, 4, P. 3107–3121.
12. Allnatt A.R., Yuen P. S. Defect interactions in ionic fluorite structures: Pair clusters in CaF2 doped by YF3. J. Phys. C.: Solid State Phys., 1975, 8, P. 2199–2212.
13. Jacobs P. W.M., Ong S.H. Studies of defect clustering in CaF2:Y3+ by ionic conductivity and thermal depolarization. J. Phys. Chem. Sol., 1980, 41, P. 431–436.
14. Laval J.P., Frit B. Defect structure of anion-excess fluorite-related Ca1-xYxF2+x solid solutions. J. Solid State Chem., 1983, 49, P. 237–246.
15. Laval J.P., Abaouz A., Frit B., Le Bail A. Short-range order in the `anion-excess fluorite-related Ca0:68Ln0:32F2:32 solid solutions: EXAES study of the Eu environment. J. of Solid State Chemistry, 1990, 85 (1), P. 133–143.
16. Catlow C.R.A., Chadwick A.V., Corish J., Moroney L.M., O’Reilly A.N. Defect structure of doped CaF2 at high temperatures. Phys. Rev. B, 1989, 39 (3), P. 1897–1906.
17. Hofmann M., Hull S., Mclntyre G.J., Wilson C.C. A neutron diffraction study of the superionic transition in (Ca1-xYx)F2+x. J. Phys.: Condens. Matter., 1997, 9, P. 845–857.
18. Hull S., Wilson C.C, The defect structure of anion-excess (Ca1-xYx)F2+x with x = 0:06. J. Solid State Chem., 1992, 100 (1), P. 101–114.
19. Wang F., Grey C.P. Probing the defect structure of anion-excess Ca1-xYxF2+x (x = 0:03 – 0:32) with high-resolution 19 F magic-angle spinning nuclear magnetic resonance spectroscopy. Chem. Mater., 1998, 10, P. 3081–3091.
20. Bendall P.J., Catlow C.R.A., Corish J., Jacobs P.W.M. Jacobs. Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms. J. Solid State Chem., 1984, 51, P. 159–169.
21. Otroshchenko L.P., Aleksandrov V.B., Bydanov N.N., Simonov V.I., Sobolev B.P. Neutron diffraction refinement of the structure of the Ca0:9Y0:1F2:1 solid solution. Crystallography, 1988, 33 (3), P. 764–765.
22. Krahl T., Scholz G., Kemnitz E. Solid Solutions CaF2–YF3 with Fluorite Structure Prepared on the Sol–Gel Route: Investigation by Multinuclear MAS NMR Spectroscopy. J. Phys. Chem. C, 2014, 118 (36), P. 21066–21074.
23. Bevan D.J.M., Greis O., Strahle J. A new structural principle in anion-excess fluorite-related superlattices. Acta Cryst., 1980, 36 (6), P. 889–890.
24. Greis O., Haschke J.M. Rare Earth Fluorides. Handbook on the Physics and Chemistry of Rare Earth. Ed. K.A. Gscheidner & L. Eyring. Amsterdam, New York, Oxford, 1982, 5 (45), P. 387–460.
25. Sobolev B.P. The Rare Earth Trifluorides. P. 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Barcelona, Institut d’Estudis Catalans, 2001.
26. Sobolev B.P., Golubev A.M., Erero P. Fluorite phases M1-xRxF2+x fM – Ca, Sr, Ba; R – rare earth elements) – nanostructured materials. Crystallography. 2003, 48 (1), P. 148–169.
27. Kuznetzov S.V., Osiko V.V., Tkatchenko E.A., Fedorov P.P. Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev., 2006, 75 (12), P. 1065–1082.
28. Alexandrov A.A., Rezaeva A.D., Konyushkin V.A., Nakladov A.N., Kuznetsov S.V., Fedorov P.P. Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition. Nanosystems: Physics, Chemistry, Mathematics, 2023, 14 (2), P. 279–285.
29. Kuznetsov S.V., Fedorov P.P. Morphological Stability of Solid-Liquid Interface during Melt Crystallization of Solid Solutions M1-xRxF2+x. Inorg. Mater., 2008, 44 (13), P. 1434–1458. (Supplement)
30. Bagdasarov Kh.S., Voronko Yu.K., Kaminskii A.A., Krotova L.V., Osiko V.V. Modification of the optical properties of CaF2-TR3+ crystals by yttrium impurities. Phys. stat. sol., 1965, 12, P. 905–912.
31. Iparraguirre I., Azkargorta J., Fern´andez J., Balda R., Oleaga A., Kaminskii A.A. Laser spectral dynamics of Nd3+ in CaF2–YF3 crystals. J. Optical Soc. America B, 1999, 16 (9), P. 1439–1446.
32. Fern´andez J., Oleaga A., Azkargorta J., Iparraguirre I., Balda R., Voda M., Kaminskii A.A. Nd3+ laser spectral dynamics in CaF2–YF3–NdF3 crystals. Optical Materials, 1999, 13 (1), P. 9–16.
33. Kuznetsov S.V., Alexandrov A.A., Fedorov P.P. Optical Fluoride Nanoceramics. Inorg. Mater., 2021, 57 (6), P. 555–578.
34. Wu Y., Su L., Wang Q., Li H., Zhan Y., Jang D., Qian X., Wang C., Zheng L., Chen H., Xu J., Ryba-Romanowski W., Solarz P., Lisiecki R. Spectroscopic properties of Yb-doped CaF2–YF3 solid-solution laser crystal. Laser Physics, 2013, 23 (10), 105805.
35. Su L.B., Wang Q.G., Li H.J., Brasse G., Camy P., Doualan J.L., Braud A., Moncorg´e R., Zhan Y.Y., Zheng L.H., Qian X.B., Xu J. Spectroscopic properties and CW laser operation of Nd, Y-codoped CaF2 single crystals. Laser Phys. Lett., 2013, 10 (3), 035804.
36. Chen H., Ikesue A., Noto H., Uehara H., Ushinuma Y., Muroga T., Yasuhara R. Nd3+ -activated CaF2 ceramic lasers. Optics Letters, 2019, 44 (13), P. 3378–338.
37. Doualan J.L., Su L.B., Brasse G., Benayad A., M´enard V., Zhan Y.Y., Braud A., Camy P., Xu J., Moncorg´e R. Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions. J. Opt. Soc. Am. B, 2013, 30, P. 3018–3021.
38. Wang Q., Su L., Ma F., Zhan Y., Jiang D., Qian X., Wang J., Zheng L., Xu J., Ryba-Romanowski W., Solarz P., Lisiecki R. Nd3+:CaF2 crystal with controlled photoluminescence spectroscopic properties by codoping Y3+ ions. Optical Materials, 2013, 36, P. 455–457.
39. Qin Z.P., Xie G.Q., Ma J., GeW.Y., Yuan P. , Qian L.J., Su L.B., Jiang D.P., Ma F.K., Zhang Q., Cao Y.X., Xu J. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal. Optics Letters, 2014, 39, 1737.
40. Li C., Fan M., Liu J., Su L., Jiang D., Qian X., Xu J. Operation of continuous wave and Q-switching on diode-pumped Nd,Y:CaF2 disordered crystal. Optics & Laser Technology, 2015, 69, P. 140–143.
41. Sun Z., Mei B., Li W., Liu X., Su L. Synthesis and optical characterizations of Nd, Y:CaF2 transparent ceramics. Optical Materials, 2017, 71, P. 35–40.
42. LiW., Huang H., Mei B., Song J., Xu X. Effect of Y3+ ion doping on the microstructure, transmittance and thermal properties of CaF2 transparent ceramics. J. of Alloys and Compounds, 2018, 747, P. 359–365.
43. Liu X.-Q., Hao Q.-Q., Liu J., Liu D.-H., Li W.-W., Su L.-B. Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines. Chin. Phys. B, 2022, 31 (11), 114205.
44. Tian J., Cao X., Wang W., Liu J., Dong J., Hu D., Wang Q., Xue Y., Xu X., Xu J. Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2–YF3. Chinese Phys. B, 2021, 30 (10), 108101.
45. LiW., Huang H., Mei B.,Wang C., Liu J.,Wang Sh., Jiang D., Su L. Fabrication, microstructure and laser performance of Yb3+ doped CaF2–YF3 transparent ceramics. Ceramics Int., 2020, 46 (11), Part B, P. 19530–19536.
46. Zhang Y., Zhao Q., Shao B., L¨u W., Dong X., You H. Facile hydrothermal synthesis and luminescent properties of Eu-doped CaF2–YF3 alkalineearth ternary fluoride microspheres. RSC Advances, 2014, 4, P. 35750–35756.
47. Jiang D., Zhan Y., Zhang Q., Ma F., Su L., Tang F., Qian X., Xu J. Nd,Y:CaF2 Laser Crystals: Novel Spectral Properties and Laser Performance from a Controlled Local Structure. CrystEngComm, 2015, 17, P. 7398–7405.
48. Babu B.H., Billotte Th., Lyu Ch., Poumellec B., Lancry M., Hao X.-T. Study of femtosecond laser writing in the bulk of Nd, Y co-doped CaF2 crystals. OSA Continuum, 2018, 2 (1), P. 151–161.
49. Liu X., Yang K., Zhao S., Li T., Luan C., Guo X., Zhao B., Zheng L., Su L., Xu J., Bian J. Growth and lasing performance of a Tm, Y: CaF2 crystal. Opt. Lett., 2017, 42 (13), P. 2567–2570.
50. Tian J., Cao X., Wang W., Liu J., Dong J., Hu D., Wang Q., Xue Y., Xu X., Xu J. Crystal growth, spectral properties and Judd–Ofelt analysis of Pr: CaF2–YF3. Chinese Phys. B, 2021, 30 (10), 108101.
51. Zhu J., Zhang L., Gao Z., Wang J., Wang Zh., Su L., Zheng L., Wang J., Xu J., We Zh. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser. Laser Phys. Lett., 2015, 12, 035801.
52. Ivanov-Shitz A.K., Murin I.V. Ionika tverdogo tela. (Solid State Ionics. St. Petersburg: SPbU, 2010. (in Russian)
53. Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. Specific features of ionic transport in nonstoichiometric fluorite-type Ca1-xRxF2+x (R = La-Lu, Y, Sc) phases. Solid State Ionics, 1990, 37, P. 125–137.
54. Sobolev B.P., Sorokin N.I., Bolotina N.B. Nonstoichiometric single crystals M1-xRxF2+x and R1-yMyF3-y (M = Ca, Sr, Ba, R – rare earth elements) as fluorine-ionic conductive solid electrolytes. In: Photonic and electronic properties of fluoride materials. Ed. A. Tressaud, K. Poeppelmeier. Amsterdam e.a.: Elsevier, 2016. P. 465–491.
55. Mogilevsky B.M., Tumpurova V.F., Chudnovsky A.F. Eng. Phys. J., 1974, 27 (2), P. 287–295.
56. Popov P.A., Fedorov P.P., Osiko V.V. Thermal Conductivity of Single Crystals of the Ca1-xYxF2+x Solid Solutions. Doklady Physics, 2014, 59 (5), P. 199–202.
57. Popov P.A., Shchelokov A.V., Fedorov P.P. Numerical model of temperature-dependent thermal conductivity in M1-xRxF2+x heterovalent solid solution nanocomposites where M stands for alkaline-earth metals and R for rare-earth metals. Nanosystems: Phys. Chem. Math., 2024, 15 (2), P. 255–259.
58. Liu K., Bian G., Zhang Z., Ma F., Su L. Modelling and analyzing the glass-like heat transfer behavior of rare-earth doped alkaline earth fluoride crystals. CrystEngComm, 2022, 24, 6468.
59. Liu K., Bian G., Zhang Z., Ma F., Su L. Simulation and demonstration of glass-like heat transfer equations in rare-earth doped alkaline earth fluoride crystals. Chinese J. of Physics, 2024, 88, P. 584–593.
60. Popov P.A., Sidorov A` .A` ., Kul’chenkov E.A., Anishchenko A.M., Avetisov I.Sh., Sorokin N.I., Fedorov P.P. Thermal conductivity and expansion of PbF2single crystal. Ionics, 2017, 23 (1), P. 233–239.
61. Popov P.A., Fedorov P.P., Reiterov V.M., Garibin E.A., Demidenko A.A., Mironov I.A., Osiko V.V. Thermal conductivity of single crystals of Ca1-xErxF2+x and Ca1-xTmxF2+x solid solutions. Doklady Physics, 2012, 57 (3), P. 97–99.
62. Popov P.A., Fedorov P.P., Konyshkin V.A. Heat Conductivity of Ca1-xRxF2+x (R = La, Ce, or Pr; 0 x 0:25) Heterovalent Solid Solutions. Crystallogr. Rep., 2015, 60 (5), P. 744–748.
63. Popov P.A., Fedorov P.P. Thermal conductivity of fluoride optical materials. Bryansk: “Desyatochka” Group of Companies, 2012. (in Russian)
64. Gettmann W., Greis O. Uber fluorit- und tysonitverwandte ordnungsphasen im system CaF2-YF3. J. Solid State Chem., 1978, 26 (3), P. 255–263.
65. Greis O. Pulverrontgenographische untersuchungen und einkristal-elektronen-diffraktion an Tveitit Ca13+(Y,SE)6-F44-. Rev. Chim. Miner., 1978, 15 (6), P. 481–493.
66. Golubev A.M. Nanometer-sized clusters in the structures of Ba1-xRxF2+x fluorite phases and ordered phases with a derivative structure. Thesis. M. Schubnikov Institute of Crystallography RAS, 2009.
67. Kazanskii S.A., Ryskin A.I., Nikiforov A.E., Zaharov A.Yu., Ougrumov M.Yu., Shakurov G.S. EPR spectra and crystal field of hexamer rare-earth clusters in fluorites. Phys. Rev. B, 2005, 72, 014127.
68. Popov P.A., Dukel’skii K.V., Mironov I.A., Smirnov A.N., Smolyanskii P.L., Fedorov P.P., Osiko V.V., Basiev T.T. Thermal conductivity of CaF2 optical ceramics. Doklady Physics, 2007, 52 (1), P. 7–9.
Review
For citations:
Popov P.A., Shchelokov A.V., Konyushkin V.A., Nakladov A.N., Fedorov P.P. Application of the numerical model of temperature-dependent thermal conductivity in Ca1-xYxF2+x heterovalent solid solution nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):67-73. https://doi.org/10.17586/2220-8054-2025-16-1-67-73