Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Изомерные защищенные дипептиды, генерирующие стабильные биосовместимые золотые наночастицы

https://doi.org/10.17586/2220-8054-2025-16-1-74-88

Аннотация

Было замечено, что два изомерных защищенных дипептида, которые показывают измененную наноморфологию в схожих условиях, но ведут себя неизменными, образуя стабильные золотые наночастицы (AuNP), имеющие схожую форму и размер; тогда как оба пептида показали флуктуирующую биосовместимость, но после конъюгации с AuNP они показывают стабильную биосовместимость. Эти золотые наноконъюгаты очень стабильны, даже до 2 месяцев AuNP не показывали никаких изменений в размере или форме. Используя простую и воспроизводимую технику однореакторного синтеза, мы смогли получить стабильные биосовместимые золотые наночастицы с использованием двух изомерных защищенных дипептидов. 

Об авторах

Кар Судешна
St. Thomas College of Engineering and Technology
Россия


Тай Йиан
National Taiwan University of Science and Technology
Тайвань


Список литературы

1. Butterfield D.A., Hensley K., Harris M., Mattson M., Carney J. -Amyloid Peptide Free Radical Fragments Initiate Synaptosomal Lipoperoxidation in a Sequence-Specific Fashion: Implications to Alzheimer’s Disease. Biochem. Biophys. Res. Commun., 1994, 200, P. 710–715.

2. Vunnam S., Juvvadi P., Merrifield R.B. Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine. J. Pept. Res., 1997, 49, P. 59–66.

3. Marqusee S., Baldwin R.L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. U. S. A., 1987, 84, P. 8898–8902.

4. Bond, J.P., Deverin, S.P., Inouye, H., El-Agnaf O.M.A., Teeter M.M., Kirschnera D.A. J. Struct. Biol., 2003, 141, P. 156–170.

5. Soares J.W., Mello C.M. Antimicrobial Peptides: a Review of How Peptide Structure Impacts Antimicrobial Activity. Proceedings of SPIE, 2004, 5271, P. 20–27.

6. Yang Z.M., Gu H., Zhang Y., Wang L., Xu B. Small molecule hydrogels based on a class of antiinflammatory agents. Chem. Commun., 2004, 9, P. 208–209.

7. Reches M., Gazit E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett., 2004, 4, P. 581–585.

8. Yan X., Zhu P., Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39, P. 1877–1890.

9. Wang W., Yang Z., Patanavanich S., Xu B., Chau Y. Controlling self-assembly within nanospace for peptidenanoparticle fabrication. Soft Matter, 2008, 4, P. 1617–1620.

10. Toledano S., Williams R.J., Jayawarna V., Ulijn R.V. Enzyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis. J. Am. Chem. Soc., 2006, 128, P. 1070–1071.

11. Reches M., Gazit E. Enzyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis. Nat. Nanotechnol., 2006, 1, P. 195–200.

12. Laromaine A., Koh L., Murugesan M., Ulijn R.V., Stevens M.M. Protease-Triggered Dispersion of Nanoparticle Assemblies. J. Am. Chem. Soc. , 2007, 129, P. 4156–4157.

13. Reches M., Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300, P. 625–627.

14. Amdursky N., Koren I., Gazit E., Rosenman G. Adjustable Photoluminescence of Peptide Nanotubes Coatings. J. Nanosci. Nanotechnol., 2011, 11, P. 9282–9286.

15. Carny O., Gazit E. Creating prebiotic sanctuary: Self-assembling supramolecular peptide structures bind and stabilize RNA. Origins Life Evol. Biospheres, 2011, 41, P. 121–132.

16. Yemini M., Reches M., Rishpon J. Gazit E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett., 2005, 5, P. 183–186.

17. Kar S., Tai Y. Marked difference in self-assembly, morphology and cell viability of positional isomeric dipeptides generated by reversal of sequence. Soft Matter., 2015, 11, P. 1345–1351.

18. Goddard Z.R, Beekman A.M., Cominetti M.M.D., O’Connell M.A., Chambrier I., Cook M.J., Mar´ın M.J., Russell D.A., Searcey M. Peptide directed phthalocyanine-gold nanoparticles for selective photodynamic therapy of EGFR overexpressing cancers. RSC Med. Chem., 2021, 12, P. 288–292.

19. Rai A., Ferreira L. Biomedical applications of peptide decorated gold nanoparticles. Critical Reviews in Biotechnology, 2021, 41, P. 186–215.

20. Kumar A., Ma H., Zhang X., Huang K., Jin S., Liu J., Wei T., Cao W., Zou G., Liang X.J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials, 2012, 33, P. 1180–1189.

21. Bucci R., Maggioni D., Locarno S., Ferretti A.M., Gelmi M.L., Pellegrino S. Exploiting ultrashort a,b-peptides in the colloidal stabilization of gold nanoparticle. Langmuir, 2021, 37, P. 11365–11373.

22. Li Y., Tang Z., Prasad P.N., Knecht M.R., Swihart M.T. Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale, 2014, 6, P. 3165–3172.

23. Kalimuthu K., Lubin B.C., Bazylevich A., Gellerman G., Shpilberg O., Luboshits G., Firer M.A. Gold nanoparticles stabilize peptide-drugconjugates for sustained targeted drug delivery to cancer cells. Nanobiotechnol., 2018, 16, 34.

24. Zhao X.R., Chen Y.L., Wang L., Wang W.F., Chen X.G. Highly sensitive fluorescence detection of trypsin based on gold nanoparticle probe. Anal. Methods, 2016, 8, P. 393–400.

25. Chandrawati R., Stevens M.M. Controlled assembly of peptide-functionalized gold nanoparticles for label-free detection of blood coagulation factor XIII activity. Chem. Commun., 2014, 50, P. 5431–5434.

26. Liu X., Wang Y., Chen P., McCadden A., Palaniappan A., Zhang J., Liedberg B. Peptide functionalized gold nanoparticles with optimized particle size and concentration for colorimetric assay development: detection of cardiac Troponin I. ACS Sens., 2016, 1, P. 1416–1422.

27. Liu L., Xia N., Liu H., Kang X., Liu X., Xue C., He X. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles enzymes and redox-cycling reaction. Biosens. Bioelectron., 2014, 53, P. 399–405.

28. Sun L., Liu D. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir, 2008, 24, P. 10293–10297.

29. Morais T., Soares M.E., Duarte J.A., Soares L., Maia S., Gomes P., Pereira E., Fraga S., Carmo H., Bastos M.D.L. Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Eur. J. Pharm. Biopharm., 2012, 80, P. 185–193.

30. Nel A., Xia T., M¨adler L., Li N. Toxic potential of materials at the nano level. Science, 2006, 311, P. 622–627.

31. Balasubramanian S.K., Yang L., Yung L.Y., Ong C.N., Ong W.Y., Yu L.E. Characterization, purification and stability of gold nanoparticles. Biomaterials., 2010, 31, P. 9023–9030.

32. Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3, P. 1941–1949.

33. Zhang G., Yang Z., Lu W., Zhang R., Huang Q., Tian M., Li L., Liang D., Li C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials., 2009, 30, P. 1928–1936.

34. Sonavane G., Tomoda K., Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B: Biointerfaces., 2008, 66, P. 274–280.

35. De. Jong W.H., Hagens W.I., Krystek P., Burger M.C., Sips A.J., Geertsma R.E. Paticle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29, P. 1912–1919.

36. Connolly M., P´erez Y., Mann E., Herrad´on .B, Fern´andez-Cruz M.L., Navas J.M. Peptide-biphenyl hybrid-capped AuNP, P. stability and biocompatibility under cell culture conditions. Nanoscale Research Letters, 2013, 8, P. 315–323.

37. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113, P. 823–839.

38. Tedesco S., Doyle H., Redmond G., Sheehan D. Gold nanoparticles and oxidative stress in Mytilus edulis. Marine Environmental Research, 2008, 66, P. 131–133.

39. Schaeublin N.M., Braydich-Stolle L.K., Schrand A.M., Miller J.M., Hutchison J., Schlagera J.J., Hussain S.M. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale, 2011, 3, P. 410–420.

40. Feng S., Ruanb G., Lic Q. Fabrication and characterizations of a novel drug delivery device liposomes-in-microsphere (LIM). Biomaterials, 2004, 25, P. 5181–5189.

41. Honary S., Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-A review (Part 2). Tropical J. of Pharmaceutical Research, 2013, 12, P. 265–273.


Дополнительные файлы

1. ELECTRONIC SUPPORTING INFORMATION (ESI)
Тема
Тип Прочее
Скачать (1MB)    
Метаданные ▾

Рецензия

Для цитирования:


Судешна К., Йиан Т. Изомерные защищенные дипептиды, генерирующие стабильные биосовместимые золотые наночастицы. Наносистемы: физика, химия, математика. 2025;16(1):74-88. https://doi.org/10.17586/2220-8054-2025-16-1-74-88

For citation:


Sudeshna K., Yian T. Isomeric protected dipeptides generated stable bio-compatible gold nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):74-88. https://doi.org/10.17586/2220-8054-2025-16-1-74-88

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)