Inverse source problem for the subdiffusion equation with edge-dependent order of time-fractional derivative on the metric star graph
https://doi.org/10.17586/2220-8054-2024-15-5-586-596
Abstract
The paper discusses the inverse source problem for the subdiffusion equation in the Sobolev space. The direct and inverse problems are transformed into operator equations to derive solutions. The uniqueness and existence of a strong solution to the direct problem are proven. The inverse problem is reduced to an operator equation, and the well-definedness and continuity of the corresponding resolvent operator are proven.
About the Authors
Zarifboy A SobirovUzbekistan
Zarifboy A. Sobirov
Universitet str., 4, 100174, Tashkent; 100174, Tashkent
Ariukhan A. Turemuratova
Uzbekistan
Ariukhan A. Turemuratova
Universitet str., 4, 100174, Tashkent; 100164, Tashkent
References
1. Kottos T., Smilansky U. Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys., 1999, 274, P. 76–124.
2. Gnutzmann S., Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv. Phys., 2006, 55, P. 527–625.
3. Exner P., Post O. Approximation of quantum graph vertex couplings by scaled Schrodinger operators on thin branched manifolds. J. Phys. A: Math. Theor., 2009, 42, P. 415305.
4. Kurasov P. Suhr R. Schrodinger operators on graphs and geometry. III. General vertex conditions and counterexamples. ¨ J. Math. Phys., 2018, 59, P. 102104.
5. Chivilikhin S.A., Gusarov V.V., Popov I.Y. Charge pumping in nanotube filled with electrolyte. Chinese Journal of Physics, 2018, 56(5), P. 2531– 2537.
6. Smolkina M.O., Popov I.Y., Blinova I.V., Milakis E. On the metric graph model for flows in tubular nanostructures. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (1), P. 6–11.
7. Yusupov J.R., Sabirov K. K., Ehrhardt M., Matrasulov D.U. Transparent nonlinear networks. Physical Review E, 2019, 100 (3), P. 1–6.
8. Yusupov J.R., Sabirov K.K., Asadov Q.U., Ehrhardt M. and Matrasulov D.U. Dirac Particles in Transparent Quantum Graphs:Tunable transport of relativistic quasiparticlesin branched structures. Physical Review E, 2020, 101 (6), P. 1–7.
9. Lavrukhine A.A., Popov A.I., Popov I.Y. On transparent vertex boundary conditions for quantum graphs. Indian Journal of Physics, 2023, 97(7), P. 2095-2102.
10. Sobirov Z.A., Akhmedov M.I., Karpova O.V., Jabbarova B. Linearized KdV equation on a metric graph. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6, P. 757–761.
11. Sobirov Z.A., Khujakulov J.R., Turemuratova A.A. Unique solvability of IBVP for pseudo-subdiffusion equation with Hilfer fractional derivative on a metric graph. Chelyabinsk Physical and Mathematical Journal, 2023, 8(3), P. 351–370.
12. Nikiforov D.S., Blinova I.V., Popov I.Y. Schrodinger and Dirac dynamics on time-dependent quantum graph. ¨ Indian Journal of Physics, 2018, 93(7), P. 913–920.
13. Sobirov Z.A., Eshimbetov M.R. Fokas method for the heat equation on metric graphs. Journal of Mathematical Sciences, 2024, 278(4), P. 1-16.
14. Sobirov Z.A., Rakhimov K.U., Ergashov R.E. Green’s function method for time-fractional diffusion equation on the star graph with equal bonds. Nanosystems: physics, chemistry, mathematics, 2021, 12(3), P. 271–278.
15. Kurasov P. On magnetic boundary control for metric graphs.Acta Physica Polonica Series A, 2023, 144(6), P. 456–461.
16. Luchko Y. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fractional Calculus and Applied Analysis, 2012, 15(1), P. 141-160.
17. Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 2000, 339 (1).
18. Sakamoto K., Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. Journal of Mathematical Analysis and Applications, 2011, 382, P. 426–447.
19. Kubica A., Yamamoto M. Initial-boundary Value Problems for Fractional Diffusion Equations with Time-Dependent Coefficients. Fractional Calculus and Applied Analysis, 2017, 21(2).
20. Gorenflo R., Luchko Y., Yamamoto M. Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal., 2015, 18, P. 799–820.
21. Kubica A., Ryszewska K., Yamamoto M. Time-Fractional Differential Equations: A Theoretical Introduction. Springer, Singapore, 2020.
22. Alimov Sh., Ashurov R. Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation. Journal of Inverse and Ill-posed Problems, 2020, 28, P. 651–658.
23. Ashurov R., Umarov S. An inverse problem of determining orders of systems of fractional pseudo-differential equations. Fractional Calculus and Applied Analysis, 2022, 25, P. 109–127.
24. Kamynin V.L. On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition. Mathematical Notes, 2005, 77, (4), P. 482–493.
25. Kamynin V.L. On the solvability of the inverse problem for determining the right-hand side of a degenerate parabolic equation with integral observation. Mathematical Notes, 2015, 98(5), P. 765–777.
26. Sobirov Z.A., Turemuratova A.A. Inverse source problem for the heat equation on a metric star graph with integral over-determination condition. Bulletin of National University of Uzbekistan Mathematics and Natural Sciences, 2023, 6(1), P. 1-15.
27. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 2006, 204, Amsterdam, etc., Elsevier.
28. Berkolaiko G., Kuchment P. Introduction to Quantum Graphs. Mathematical surveys and monographs. AMS, 2013, 186.
29. Mainardi F., Mura A., Pagnini G., Gorenflo R. Sub-diffusion equations of fractional order and their fundamental solutions. Mathematical Methods in Engineering. Springer, Dordrecht. 2007.
30. Mehandiratta V., Mehra M., Leugering G. Existence and uniqueness of time-fractional diffusion equation on a metric star graph. Communications in Computer and Information Science book series, 2021, 1345, P. 25-41.
31. Sobirov Z.A. Cauchy problem for subdiffusion equation on metric star graph with edge dependent order of time-fractional derivative. Lobachevskii Journal of Mathematics, 2023, 43(11), P. 3282–3291.
32. Ladyzhenskaya O.A. Boundary Problems of Mathematical Physics. Nauka, Moscow, 1973.
33. Alikhanov A.A. A priori estimate for solutions of boundary value problems for fractional-order equations. Differential Equations, 2010, 46(5), P. 660–666.
34. Mehandiratta V., Mehra M., Leugering G. Distributed optimal control problems driven by space-time fractional parabolic equations. Control and Cybernetics, 2022, 51(2), P. 191–226.
35. Pskhu A.V. On solution representation of generalized Abel integral equation. J.Math., 2013, ID 106251, P. 1–5.
Review
For citations:
Sobirov Z.A., Turemuratova A.A. Inverse source problem for the subdiffusion equation with edge-dependent order of time-fractional derivative on the metric star graph. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):586-596. https://doi.org/10.17586/2220-8054-2024-15-5-586-596