Synthesis, structure and noncovalent interactions of mesityl(phenyl)phosphine oxide glycolate based hydrogen-bonded nanosized organic framework
https://doi.org/10.17586/2220-8054-2025-16-1-116-122
Abstract
The reaction of glyoxylic acid monohydrate with mesityl(phenyl)phosphine in air led to the formation of mesityl(phenyl)phosphine oxide glycolate. The synthesized mesityl(phenyl)phosphine oxide glycolate has been characterized by various analytical methods including X-ray crystal structure analysis. The analysis of intermolecular interactions in the crystal revealed interesting modes of the noncovalent bonding between pairs of molecules. These intermolecular interactions cause the formation of one-dimensional cylindrical channels with diameter of 1 nm (10 A° ) and provide the crystal with the properties of precise nano-sized crystalline porous material which can be served as the component for precise nanofiltration membranes improving the properties of amorphous polymers which suffer from disordered pore structures and reduced selectivity towards separating molecules.
About the Authors
A. A. KagilevRussian Federation
Alexey A. Kagilev
420088, Kazan
I. F. Sakhapov
Russian Federation
Ilyas F. Sakhapov
420088, Kazan
Z. N. Gafurov
Russian Federation
Zufar N. Gafurov
420088, Kazan
A. O. Kantyukov
Russian Federation
Artyom O. Kantyukov
420088, Kazan
I. K. Mikhailov
Russian Federation
Ilya K. Mikhailov
420088, Kazan
D. R. Islamov
Russian Federation
Daut R. Islamov
420111, Kazan
A. V. Gerasimov
Russian Federation
Alexander V. Gerasimov
420008, Kazan
O. A. Filippov
Russian Federation
Oleg A. Filippov
119991, Moscow
A. T. Gubaidullin
Russian Federation
Aidar T. Gubaidullin
420088, Kazan
O. S. Soficheva
Russian Federation
Olga S. Soficheva
420088, Kazan
O. G. Sinyashin
Russian Federation
Oleg G. Sinyashin
420088, Kazan
D. G. Yakhvarov
Russian Federation
Dmitry G. Yakhvarov
420088, Kazan
References
1. de Silva P., Corminboeuf C. Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap. J. Chem. Theory Comput., 2014, 10, P. 3745–3756.
2. Johnson E.R., Keinan S., Mori-S´anchez P., Contreras-Garc´ıa J., Cohen A.J., Yang W. Revealing Noncovalent Interactions. J. Am. Chem. Soc., 2010, 132, P. 6498–6506.
3. Andrez´alov´a L., Orsz´aghov´a Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. Journal of Inorganic Biochemistry, 2021, 225, P. 111624.
4. Gao X., Zou X., Ma H., Meng S., Zhu G. Highly Selective and Permeable Porous Organic Framework Membrane for CO2 Capture. Advanced Materials, 2014, 26, P. 3644–3648.
5. Hobza P., Rˇ eza´cˇJ. Introduction: Noncovalent Interactions. Chem. Rev., 2016, 116, P. 4911–4912.
6. Kollman P.A. Noncovalent interactions. Acc. Chem. Res., 1977, 10, P. 365–371.
7. Vyas V.S., Vishwakarma M., Moudrakovski I., Haase F., Savasci G., Ochsenfeld C., Spatz J.P., Lotsch B.V. Exploiting Noncovalent Interactions in an Imine-Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, P. 8749–8754.
8. Li P., Ryder M.R., Stoddart J.F. Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Acc. Mater. Res., 2020, 1, P. 77–87.
9. Shah M., McCarthy M.C., Sachdeva S., Lee A.K., Jeong H.-K. Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges. Ind. Eng. Chem. Res., 2012, 51, P. 2179–2199.
10. Caro J., Noack M. Zeolite membranes – Recent developments and progress. Microporous and Mesoporous Materials, 2008, 115, P. 215–233.
11. Zhu X., Tian C., Mahurin S.M., Chai S.-H., Wang C., Brown S., Veith G.M., Luo H., Liu H., Dai S. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation. J. Am. Chem. Soc., 2012, 134, P. 10478–10484.
12. Carta M., Malpass-Evans R., Croad M., Rogan Y., Jansen J.C., Bernardo P., Bazzarelli F., McKeown N.B. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013, 339, P. 303–307.
13. Chen L., Zhang B., Chen L., Liu H., Hu Y., Qiao S. Hydrogen-bonded organic frameworks: design, applications, and prospects. Mater. Adv., 2022, 3, P. 3680–3708.
14. Yang J., Wang J., Hou B., Huang X., Wang T., Bao Y., Hao H. Porous hydrogen-bonded organic frameworks (HOFs): From design to potential applications. Chemical Engineering Journal, 2020, 399, P. 125873.
15. Arduengo A.J.I., Gamper S.F., Tamm M., Calabrese J.C., Davidson F., Craig H.A. A Bis(carbene)-Proton Complex: Structure of a C-H-C Hydrogen Bond. J. Am. Chem. Soc., 1995, 117, P. 572–573.
16. Gronert S., Keeffe J.R. Identity Hydride-Ion Transfer from C?H Donors to C Acceptor Sites. Enthalpies of Hydride Addition and Enthalpies of Activation. Comparison with C H C Proton Transfer. An ab Initio Study. J. Am. Chem. Soc., 2005, 127, P. 2324–2333.
17. Krishnamohan Sharma C.V., Broker G.A., Rogers R.D. Polymorphous One-Dimensional Tetrapyridylporphyrin Coordination Polymers Which Structurally Mimic Aryl Stacking Interactions. Journal of Solid State Chemistry, 2000, 152, P. 253–260.
18. Duarte M.T., Piedade M.F.M., Robalo M.P., Teixeira A.P.S., Garcia M.H. A supramolecular zigzag chain of organometallic dipoles mediated by PF6-anions. Acta Crystallogr C Cryst Struct Commun, 2005, 61, P. m386–m389.
19. Das S., Bharadwaj P.K. Self-Assembly of a Luminescent Zinc(II) Complex: a Supramolecular Host–Guest Fluorescence Signaling System for Selective Nitrobenzene Inclusion. Inorg. Chem., 2006, 45, P. 5257–5259.
20. Chakravorty S., Platts J.A., Das B.K. Novel C–H C contacts involving 3,5-dimethylpyrazole ligands in a tetracoordinate Co(ii) complex. Dalton Trans., 2011, 40, P. 11605.
21. Kharel S., Bhuvanesh N., Gladysz J.A., Bl¨umel J. New hydrogen bonding motifs of phosphine oxides with a silanediol, a phenol, and chloroform. Inorganica Chimica Acta, 2019, 490, P. 215–219.
22. Tupikina E.Yu., Bodensteiner M., Tolstoy P.M., Denisov G.S., Shenderovich I.G. P=O Moiety as an Ambidextrous Hydrogen Bond Acceptor. J. Phys. Chem. C, 2018, 122, P. 711–1720.
23. Kostin M.A., Pylaeva S.A., Tolstoy P.M. Phosphine oxides as NMR and IR spectroscopic probes for the estimation of the geometry and energy of PO H–A hydrogen bonds. Phys. Chem. Chem. Phys., 2022, 24, P. 7121–7133.
24. Kostin M.A., Alkhuder O., Xu L., Krutin D.V., Asfin R.E., Tolstoy P.M. Complexes of phosphine oxides with substituted phenols: hydrogen bond characterization based on shifts of P-O stretching bands. Phys. Chem. Chem. Phys., 2024, 26, P. 10234–10242.
25. Gafurov Z.N., Zueva E.M., Yakhvarov D.G. Sustainable Synthesis, NMR and Computational Study of Isobutylmesitylphosphine. Chemistry Select, 2021, 6, P. 1833–1837.
26. Jerphagnon T., Renaud J.-L., Bruneau C. Chiral monodentate phosphorus ligands for rhodium-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2004, 15, P. 2101–2111.
27. Imamoto T., Cr´epy K.V.L., Katagiri K. Optically active 1,1’-di-tert-butyl-2,2’-dibenzophosphetenyl: a highly strained P-stereogenic diphosphine ligand. Tetrahedron: Asymmetry, 2004, 15, P. 2213–2218.
28. Cheng X., Horton P.N., Hursthouse M.B., Hii K.K. Aminohydroxy phosphine oxide ligands in ruthenium-catalysed asymmetric transfer hydrogenation reactions. Tetrahedron: Asymmetry, 2004, 15, P. 2241–2246.
29. Methot J.L., Roush W.R. Nucleophilic Phosphine Organocatalysis. Adv Synth Catal, 2004, 346, P. 1035–1050.
30. Seayad J., List B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3, P. 719.
31. Connon S.J. Chiral Phosphoric Acids: Powerful Organocatalysts for Asymmetric Addition Reactions to Imines. Angew Chem Int Ed, 2006, 45, P. 3909–3912.
32. Benaglia M., Rossi S. Chiral phosphine oxides in present-day organocatalysis. Org. Biomol. Chem., 2010, 8, P. 3824.
33. Adams H., Collins R.C., Jones S., Warner C.J.A. Enantioselective Preparation of P-Chiral Phosphine Oxides. Org. Lett., 2011, 13, P. 6576–6579.
34. Gafurov Z.N., Musin L.I., Sakhapov I.F., Babaev V.M., Musina E.I., Karasik A.A., Sinyashin O.G., Yakhvarov D.G. The formation of secondary arylphosphines in the reaction of organonickel sigma-complex [NiBr(Mes)(bpy)], where Mes = 2,4,6-trimethylphenyl, bpy = 2,2’-bipyridine, with phenylphosphine. Phosphorus, Sulfur, and Silicon and the Related Elements, 2016, 191, P. 1475–1477.
35. Sheldrick G.M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv, 2015, 71, P. 3–8.
36. Sheldrick G.M. A short history ofSHELX. Acta Crystallogr A Found Crystallogr, 2007, 64, P. 112–122.
37. Macrae C.F. Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., Van De Streek J. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr, 2006, 39, P. 453–457.
38. www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.uk)
39. EVA v.11.0.0.3. User Manual. SOCABIM, 2005.
40. Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., Jayatilaka D., Spackman M.A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr, 2021, 54, P. 1006–1011.
41. Mackenzie C.F., Spackman P.R., Jayatilaka D., Spackman M.A. CrystalExplorermodel energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4, P. 575–587.
42. Grossmann G., Kr¨uger K., Ohms G., Fischer A., Jones P.G., Goerlich J., Schmutzler R. Phosphorus Nuclear Magnetic Shielding Anisotropy and Crystal Structure of (1-Hydroxyalkyl)dimethylphosphine Sulfides. Inorg. Chem., 1997, 36, P. 770–775.
Supplementary files
![]() |
1. Electronic supplementary materials | |
Subject | ||
Type | Other | |
Download
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Kagilev A.A., Sakhapov I.F., Gafurov Z.N., Kantyukov A.O., Mikhailov I.K., Islamov D.R., Gerasimov A.V., Filippov O.A., Gubaidullin A.T., Soficheva O.S., Sinyashin O.G., Yakhvarov D.G. Synthesis, structure and noncovalent interactions of mesityl(phenyl)phosphine oxide glycolate based hydrogen-bonded nanosized organic framework. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):116-122. https://doi.org/10.17586/2220-8054-2025-16-1-116-122