Синтез, структура и нековалентные взаимодействия наноразмерного водородно-связанного каркасного полимера на основе гликолята мезитил(фенил)фосфиноксида
https://doi.org/10.17586/2220-8054-2025-16-1-116-122
Аннотация
Реакция моногидрата глиоксиловой кислоты с мезитил(фенил)фосфином на воздухе привела к образованию гликолата оксида мезитил(фенил)фосфина. Синтезированный гликолят оксида мезитил(фенил)фосфина был охарактеризован различными аналитическими методами, кристаллическая структура определена методом рентгеновской дифракции. Анализ межмолекулярных взаимодействий в кристалле выявил интересные типы нековалентных связей между парами молекул. Эти межмолекулярные взаимодействия вызывают образование одномерных цилиндрических каналов диаметром 1 нм (10 Å) и придают кристаллу свойства наноразмерного кристаллического пористого материала с точным размером пор, который может служить компонентом для точных нанофильтрационных мембран, улучшающих свойства аморфных полимеров, имеющих неупорядоченную структуру и пониженную селективность по отношению к разделяемым молекулам
Об авторах
А. А. КагилевРоссия
И. Ф. Сахапов
Россия
З. Н. Гафуров
Россия
А. О. Кантюков
Россия
И. К. Михайлов
Россия
Д. Р. Исламов
Россия
А. В. Герасимов
Россия
О. А. Филиппов
Россия
А. Т. Губайдуллин
Россия
О. С. Софичева
Россия
О. Г. Синяшин
Россия
Д. Г. Яхваров
Россия
Список литературы
1. de Silva P., Corminboeuf C. Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap. J. Chem. Theory Comput., 2014, 10, P. 3745–3756.
2. Johnson E.R., Keinan S., Mori-S´anchez P., Contreras-Garc´ıa J., Cohen A.J., Yang W. Revealing Noncovalent Interactions. J. Am. Chem. Soc., 2010, 132, P. 6498–6506.
3. Andrez´alov´a L., Orsz´aghov´a Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. Journal of Inorganic Biochemistry, 2021, 225, P. 111624.
4. Gao X., Zou X., Ma H., Meng S., Zhu G. Highly Selective and Permeable Porous Organic Framework Membrane for CO2 Capture. Advanced Materials, 2014, 26, P. 3644–3648.
5. Hobza P., Rˇ eza´cˇJ. Introduction: Noncovalent Interactions. Chem. Rev., 2016, 116, P. 4911–4912.
6. Kollman P.A. Noncovalent interactions. Acc. Chem. Res., 1977, 10, P. 365–371.
7. Vyas V.S., Vishwakarma M., Moudrakovski I., Haase F., Savasci G., Ochsenfeld C., Spatz J.P., Lotsch B.V. Exploiting Noncovalent Interactions in an Imine-Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, P. 8749–8754.
8. Li P., Ryder M.R., Stoddart J.F. Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Acc. Mater. Res., 2020, 1, P. 77–87.
9. Shah M., McCarthy M.C., Sachdeva S., Lee A.K., Jeong H.-K. Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges. Ind. Eng. Chem. Res., 2012, 51, P. 2179–2199.
10. Caro J., Noack M. Zeolite membranes – Recent developments and progress. Microporous and Mesoporous Materials, 2008, 115, P. 215–233.
11. Zhu X., Tian C., Mahurin S.M., Chai S.-H., Wang C., Brown S., Veith G.M., Luo H., Liu H., Dai S. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation. J. Am. Chem. Soc., 2012, 134, P. 10478–10484.
12. Carta M., Malpass-Evans R., Croad M., Rogan Y., Jansen J.C., Bernardo P., Bazzarelli F., McKeown N.B. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013, 339, P. 303–307.
13. Chen L., Zhang B., Chen L., Liu H., Hu Y., Qiao S. Hydrogen-bonded organic frameworks: design, applications, and prospects. Mater. Adv., 2022, 3, P. 3680–3708.
14. Yang J., Wang J., Hou B., Huang X., Wang T., Bao Y., Hao H. Porous hydrogen-bonded organic frameworks (HOFs): From design to potential applications. Chemical Engineering Journal, 2020, 399, P. 125873.
15. Arduengo A.J.I., Gamper S.F., Tamm M., Calabrese J.C., Davidson F., Craig H.A. A Bis(carbene)-Proton Complex: Structure of a C-H-C Hydrogen Bond. J. Am. Chem. Soc., 1995, 117, P. 572–573.
16. Gronert S., Keeffe J.R. Identity Hydride-Ion Transfer from C?H Donors to C Acceptor Sites. Enthalpies of Hydride Addition and Enthalpies of Activation. Comparison with C H C Proton Transfer. An ab Initio Study. J. Am. Chem. Soc., 2005, 127, P. 2324–2333.
17. Krishnamohan Sharma C.V., Broker G.A., Rogers R.D. Polymorphous One-Dimensional Tetrapyridylporphyrin Coordination Polymers Which Structurally Mimic Aryl Stacking Interactions. Journal of Solid State Chemistry, 2000, 152, P. 253–260.
18. Duarte M.T., Piedade M.F.M., Robalo M.P., Teixeira A.P.S., Garcia M.H. A supramolecular zigzag chain of organometallic dipoles mediated by PF6-anions. Acta Crystallogr C Cryst Struct Commun, 2005, 61, P. m386–m389.
19. Das S., Bharadwaj P.K. Self-Assembly of a Luminescent Zinc(II) Complex: a Supramolecular Host–Guest Fluorescence Signaling System for Selective Nitrobenzene Inclusion. Inorg. Chem., 2006, 45, P. 5257–5259.
20. Chakravorty S., Platts J.A., Das B.K. Novel C–H C contacts involving 3,5-dimethylpyrazole ligands in a tetracoordinate Co(ii) complex. Dalton Trans., 2011, 40, P. 11605.
21. Kharel S., Bhuvanesh N., Gladysz J.A., Bl¨umel J. New hydrogen bonding motifs of phosphine oxides with a silanediol, a phenol, and chloroform. Inorganica Chimica Acta, 2019, 490, P. 215–219.
22. Tupikina E.Yu., Bodensteiner M., Tolstoy P.M., Denisov G.S., Shenderovich I.G. P=O Moiety as an Ambidextrous Hydrogen Bond Acceptor. J. Phys. Chem. C, 2018, 122, P. 711–1720.
23. Kostin M.A., Pylaeva S.A., Tolstoy P.M. Phosphine oxides as NMR and IR spectroscopic probes for the estimation of the geometry and energy of PO H–A hydrogen bonds. Phys. Chem. Chem. Phys., 2022, 24, P. 7121–7133.
24. Kostin M.A., Alkhuder O., Xu L., Krutin D.V., Asfin R.E., Tolstoy P.M. Complexes of phosphine oxides with substituted phenols: hydrogen bond characterization based on shifts of P-O stretching bands. Phys. Chem. Chem. Phys., 2024, 26, P. 10234–10242.
25. Gafurov Z.N., Zueva E.M., Yakhvarov D.G. Sustainable Synthesis, NMR and Computational Study of Isobutylmesitylphosphine. Chemistry Select, 2021, 6, P. 1833–1837.
26. Jerphagnon T., Renaud J.-L., Bruneau C. Chiral monodentate phosphorus ligands for rhodium-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2004, 15, P. 2101–2111.
27. Imamoto T., Cr´epy K.V.L., Katagiri K. Optically active 1,1’-di-tert-butyl-2,2’-dibenzophosphetenyl: a highly strained P-stereogenic diphosphine ligand. Tetrahedron: Asymmetry, 2004, 15, P. 2213–2218.
28. Cheng X., Horton P.N., Hursthouse M.B., Hii K.K. Aminohydroxy phosphine oxide ligands in ruthenium-catalysed asymmetric transfer hydrogenation reactions. Tetrahedron: Asymmetry, 2004, 15, P. 2241–2246.
29. Methot J.L., Roush W.R. Nucleophilic Phosphine Organocatalysis. Adv Synth Catal, 2004, 346, P. 1035–1050.
30. Seayad J., List B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3, P. 719.
31. Connon S.J. Chiral Phosphoric Acids: Powerful Organocatalysts for Asymmetric Addition Reactions to Imines. Angew Chem Int Ed, 2006, 45, P. 3909–3912.
32. Benaglia M., Rossi S. Chiral phosphine oxides in present-day organocatalysis. Org. Biomol. Chem., 2010, 8, P. 3824.
33. Adams H., Collins R.C., Jones S., Warner C.J.A. Enantioselective Preparation of P-Chiral Phosphine Oxides. Org. Lett., 2011, 13, P. 6576–6579.
34. Gafurov Z.N., Musin L.I., Sakhapov I.F., Babaev V.M., Musina E.I., Karasik A.A., Sinyashin O.G., Yakhvarov D.G. The formation of secondary arylphosphines in the reaction of organonickel sigma-complex [NiBr(Mes)(bpy)], where Mes = 2,4,6-trimethylphenyl, bpy = 2,2’-bipyridine, with phenylphosphine. Phosphorus, Sulfur, and Silicon and the Related Elements, 2016, 191, P. 1475–1477.
35. Sheldrick G.M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv, 2015, 71, P. 3–8.
36. Sheldrick G.M. A short history ofSHELX. Acta Crystallogr A Found Crystallogr, 2007, 64, P. 112–122.
37. Macrae C.F. Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., Van De Streek J. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr, 2006, 39, P. 453–457.
38. www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.uk)
39. EVA v.11.0.0.3. User Manual. SOCABIM, 2005.
40. Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., Jayatilaka D., Spackman M.A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr, 2021, 54, P. 1006–1011.
41. Mackenzie C.F., Spackman P.R., Jayatilaka D., Spackman M.A. CrystalExplorermodel energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4, P. 575–587.
42. Grossmann G., Kr¨uger K., Ohms G., Fischer A., Jones P.G., Goerlich J., Schmutzler R. Phosphorus Nuclear Magnetic Shielding Anisotropy and Crystal Structure of (1-Hydroxyalkyl)dimethylphosphine Sulfides. Inorg. Chem., 1997, 36, P. 770–775.
Дополнительные файлы
![]() |
1. Electronic supplementary materials | |
Тема | ||
Тип | Прочее | |
Скачать
(1MB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Кагилев А.А., Сахапов И.Ф., Гафуров З.Н., Кантюков А.О., Михайлов И.К., Исламов Д.Р., Герасимов А.В., Филиппов О.А., Губайдуллин А.Т., Софичева О.С., Синяшин О.Г., Яхваров Д.Г. Синтез, структура и нековалентные взаимодействия наноразмерного водородно-связанного каркасного полимера на основе гликолята мезитил(фенил)фосфиноксида. Наносистемы: физика, химия, математика. 2025;16(1):116-122. https://doi.org/10.17586/2220-8054-2025-16-1-116-122
For citation:
Kagilev A.A., Sakhapov I.F., Gafurov Z.N., Kantyukov A.O., Mikhailov I.K., Islamov D.R., Gerasimov A.V., Filippov O.A., Gubaidullin A.T., Soficheva O.S., Sinyashin O.G., Yakhvarov D.G. Synthesis, structure and noncovalent interactions of mesityl(phenyl)phosphine oxide glycolate based hydrogen-bonded nanosized organic framework. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):116-122. https://doi.org/10.17586/2220-8054-2025-16-1-116-122