Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Extremality of Gibbs measures for the DNA-Ising molecule model on the Cayley tree

https://doi.org/10.17586/2220-8054-2025-16-2-142-153

Abstract

We examine a model of a DNA-Ising molecule on a Cayley tree of order k ≥ 2. For this model, we derive a system of functional equations, where each positive solution corresponds to a Gibbs measure. On the general order Cayley tree, we can solve the model exactly. Specifically, we can find the exact value of the critical temperature Tc for any k ≥ 2 so that, if T Tc, there is a unique translation-invariant Gibbs measure (TIGM), and if T < Tc, there are three TIGMs. We determine the model’s typical configurations and stationary distributions for high enough and low enough temperatures. The primary attention is focused on the systematic study of the structure of the set of the Gibbs measures. In this paper, we present a non-trivial adaptation of famous techniques, such as the Martinelli-Sinclair-Weitz criterion for determining the extremality of TIGMs and the Kesten-Stigum criterion for determining the non-extremality of TIGMs. One of the important contributions of this paper is the resolution of the extremality versus non-extremality regions for one of the TIGMs on a Cayley tree of the general order. For the other TIGMs, the extremality and non-extremality regions are determined on Cayley trees of orders up to 5.

About the Authors

N. M. Khatamov
Namangan state university; V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
Uzbekistan

Nosirjon M. Khatamov

Boburshox street, 161, 160107, Namangan

4B, St. University, 100174, Tashkent



N. N. Malikov
Namangan state university
Uzbekistan

Nematulla N. Malikov

Boburshox street, 161, 160107, Namangan



References

1. Rozikov U.A., Rahmatullaev M.M. Description of weakly periodic Gibbs measures of the Ising model on the Cayley tree. Theoretical and Mathematical Physics, 2008, 156(2), P. 1218–1227.

2. Rozikov U.A. Gibbs Measures on Cayley Trees. World Scientific. Singapore, 2013.

3. Blekher P. M., Ganikhodjaev N. N. On pure phases of the Ising model on the Bethe lattice. Probability Theory and Its Applications, 1990, 35(2), P. 920–930.

4. Akin H., Rozikov U.A., Temur S. A new set of limiting Gibbs measures for the Ising model on a Cayley tree. J.Stat.Phys., 2011, 142, P. 314–321.

5. Gandolfo D., Rozikov U.A., Ruiz J. Rahmatullaev M.M. On free energies of the Ising model on the Cayley tree. J.Stat.Phys., 2013, 150, P. 1201– 1217.

6. Gandolfo D., Haydarov F.H., Rozikov U.A., Ruiz J. New phase transitions of the Ising model on Cayley trees. J.Stat.Phys., 2013, 153, P. 400–411.

7. Rozikov U.A. Tree-hierarchy of DNA and distribution of Holliday junctions. J.Math.Biol., 2017, 75, P. 1715–1733.

8. Rozikov U.A. Holliday junctions for the Potts model of DNA. Algebra, Complex Analysis. Springer, Switzerland 2018, P. 151–165.

9. Rozikov U.A. Thermodynamics of interacting systems of DNA molecules. Theoretical and Mathematical Physics, 2021, 206(2), P. 174–183.

10. Khatamov N.M. Holliday junctions in the Blume-Capel model of DNA. Theoretical and Mathematical Physics, 2021, 206(3), P. 383–390.

11. Khatamov N.M. Holliday junctions in the HC Blume-Capel model in ”one case” on DNA. Nanosytems: physics, chemisry, mathematics, 2021, 12(5), P. 563–568.

12. Khatamov N.M., Malikov N.N. Holliday junctions in a set of DNA molecules for new translation-invariant Gibbs measures of the Potts model. Theoretical and Mathematical Physics, 2024, 218(2), P. 346–356.

13. Rozikov U.A. Thermodynamics of DNA-RNA renaturation. Inter.Jour.Geom.Methods Mod.Phys., 2021, 18(6), P. 2150096 (14 pages).

14. Rozikov U.A. Gibbs measures in biology and physics: The Potts model. World Sci. Publ. Singapore, 2022.

15. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell. 4-th edn. Garland Science, New York, 2002.

16. Swigon D. The mathematics of DNA structure, mechanics, and dynamics. Mathematics of DNA Structure, Function and Interactions, 2009, 150, P. 293–320.

17. Thompson C. Mathematical Statistical Mechanics, Princeton Univ. Press, Princeton, 1972.

18. Georgii H.-O. Gibbs measures and phase transitions. de Gruyter stadies in Math: Berlin, 1988.

19. Khatamov N.M. Extremality of the Gibbs measures for the HC-Blume–Capel model on the Cayley tree. Mathematical notes, 2022, 111(5), P. 768– 781.

20. Khatamov N.M., Khakimov R.M. Translation-invariant Gibbs measures for the Blume-Capel model on a Cayley tree. Journal of Mathematical Physics, Analysis, Geometry, 2019, 15(2), P. 239–255.

21. Khatamov N.M. Periodic Gibbs measures and their extremes for the HC-Blume–Capel model in the case of a ”wand” on the Cayley tree. Lobachevskii Journal of Mathematics, 2019, 43(9), P. 2515–2524.

22. Khatamov N.M. Translation-invariant extreme Gibbs measures for the Blume-Capel model with a wand on a Cayley tree. Ukrainian Mathematical Journal, 2020, 72(4), P. 540–556.

23. Khatamov N.M. Periodic Gibbs measures and their extremality for the HC-Blume–Capel model in the case of a ”wand” with a chemical potential on the Cayley tree. Mathematical notes, 2024, 115(1), P. 89–101.

24. Mossel E. Reconstruction on trees: beating the second eigenvalue. Ann. Appl. Probab., 2001, 11(1), P. 285–300.

25. Mossel E., Peres Y. Information flow on trees. Ann. Appl. Probab., 2003, 13(3), P. 817–844.

26. Mossel E. Survey: information flow on trees. Graphs. Morphisms and statistical physics. Ser. Discrete Math. Theoret.Comput. Sci., 2004, 63, P. 155–170.

27. Rozikov U.A. Ishankulov F.T. Description of periodic p-harmonic functions on Cayley trees. Nonlinear Differ. Equ. Appl., 2010, 17, P. 153–160.

28. Bogachev L.V. and Rozikov U.A. On the uniqueness of Gibbs measure in the Potts model on a Cayley tree with external field. J. Stat. Mech. Theory Exp., 2019, 7, 073205. 77 pp.

29. Kulske C., Rozikov U.A. and Khakimov R.M. Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley ¨ tree. J. Stat. Phys., 2014, 156, P. 189–200.

30. Kulske C., Rozikov U.A. Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree. ¨ Random Structures Algorithms, 2017, 50, P. 636–678.

31. Haydarov F.H., Rozikov U.A. Gradient Gibbs measures of a SOS model on Cayley trees: 4-periodic boundary laws. Reports on Mathematical Physics, 2022. 90(1), P. 81–101.

32. Kesten H., Stigum B.P. Additional limit theorem for indecomposable multi-dimensional Galton-Watson processes. Annals of Mathematical Statistics, 1966, 37, P. 1463–1481.

33. Martinelli F., Sinclair A., Weitz D. Fast mixing for independent sets, coloring and other models on trees. Random Structures and Algoritms, 2007, 31, P. 134–172.


Review

For citations:


Khatamov N.M., Malikov N.N. Extremality of Gibbs measures for the DNA-Ising molecule model on the Cayley tree. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):142-153. https://doi.org/10.17586/2220-8054-2025-16-2-142-153

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)