Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Роль pH реакционной среды в образовании нанокристаллических фаз в системе Bi2O3-P2O5-H2O

https://doi.org/10.17586/2220-8054-2024-15-3-361-368

Аннотация

   Показано, что в кислой среде (pH = 2) при температуре 298 K формируется гексагональный BiPO4, тогда как при pH = 8 и 12 образуются рентгеноаморфные вещества. Показано, что после гидротермальной обработки при 473 K в водно-солевой среде из гексагонального фосфата висмута в кислой среде образуется моноклинная модификация фосфата висмута, а в слабощелочной и щелочной средах из аморфных предшественников образуются наноразмерные частицы кристаллических соединений Bi3O(OH)(PO4)2 (с размером кристаллитов около 62 нм) и Bi2O3 (с размером кристаллитов около 70 нм). Методом термодинамического расчета получены зависимости равновесной молярной растворимости этих кристаллических соединений от величины pH водно-солевой суспензии. Термодинамический расчет показал, что соединение BiPO4 является устойчивым в интервале pH от 0 до 5.8 при температуре 298 и 473 K. Для интервала pH от 5.8 до 9.8 характерно образование соединения Bi3O(OH)(PO4)2 при 298 K, а дальнейшее повышение величины pH приводит к выпадению близких по растворимости Bi2O3, BiOOH или Bi(OH)3 при 298 и 473 K. Полученные путем термодинамического расчета данные согласуются с экспериментальными данными о границах устойчивого существования соединений BiPO4, Bi3O(OH)(PO4)2 и Bi2O3.

Об авторах

Д. П. Еловиков
http://nanojournal.ifmo.ru
Институт химии силикатов имени И.В. Гребенщикова РАН
Россия

Дмитрий П. Еловиков

197022; Санкт-Петербург



А. А. Осминина
http://nanojournal.ifmo.ru
Институт химии силикатов имени И.В. Гребенщикова РАН
Россия

Алена А. Осминина

197022; Санкт-Петербург



Список литературы

1. Diodati S., Walton R.I., Mascotto S., Gross S. Low-temperature wet chemistry synthetic approaches towards ferrites. Inorganic Chemistry Frontiers, 2020, 7 (18), P. 3282–3314.

2. Bretos I., Jimenez R., Ricote J., Calzada M.L. Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chemical Society Reviews, 2018, 47 (2), P. 291–308.

3. Diodati S., Dolcet P., Casarin M., Gross S. Pursuing the Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes. Chemical Reviews, 2015, 115 (20), P. 11449–11502.

4. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. Gen. Chem., 1997, 67 (12), P. 1846–1851.

5. Abiev R.S., Proskurina, O.V., Enikeeva, M.O., Gusarov V.V. Effect of Hydrodynamic Conditions in an Impinging-Jet Microreactor on the Formation of Nanoparticles Based on Complex Oxides. Theor. Found. Chem. Eng., 2021, 55 (1), P. 12–29.

6. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Phys. Chem. Math., 2022, 13 (2), P. 164–180.

7. Ghanizadeh S., Bao X., Vaidhyanathan B., Binner J. Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: a comparative study. Ceramics Int., 2014, 40 (1), P. 1311–1319.

8. Jesus A.C.B., Jesus J.R., Lima R.J.S., Moura K.O., Almeida J.M.A., Duque J.G.S., Meneses C.T. Synthesis and magnetic interaction on concentrated Fe<sub>3</sub>O<sub>4</sub> nanoparticles obtained by the co-precipitation and hydrothermal chemical methods. Ceramics Int., 2020, 46 (8), P. 11149–11153.

9. Gahrouei Z.E., Imani M.; Soltani M., Shafyei A. Synthesis of iron oxide nanoparticles for hyperthermia application: Effect of ultrasonic irradiation assisted co-precipitation route. Adv. Nat. Sci.: Nanosci. Nanotechnol, 2020, 11 (2), 025001.

10. Dehghanghadikolaei A., Ansary J., Ghoreishi R. Sol-gel process applications : A mini-review. Proc. Nat. Res. Soc., 2018, 2 (1), P. 02008–02029.

11. Danks A.E., Hall S.R, Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Materials Horizons, 2015 3 (2), P. 91–112.

12. Verma S., Rani S., Kumar S. Crystal structure, morphology and optical behaviour of sol-gel derived pyrochlore rare earth titanates RE<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> (RE= Dy, Sm). J. of Alloys and Compounds, 2018, 750, P. 902–910.

13. Bokov D., Jalil A.T., Chupradit S., Suksatan W., Ansari M.J., Shewael I.H., Valiev G.H., Kianfar E. Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021, 2021.

14. Ivanets A.I., Kuznetsova T.F., Prozorovich V.G. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide. Russian J. of Physical Chemistry A, 2015, 89, P. 481–486.

15. Berezhnaya M.V., Al’myasheva O.V., Mittova V.O., Nguen A.T., Mittova I.Y. Sol-gel synthesis and properties of Y1−xBaxFeO<sub>3</sub> nanocrystals. Russian J. of General Chemistry, 2018, 88, P. 626–631.

16. Filippova A.D., Rumyantsev A.A., Baranchikov A.E., Kolesnik I.V., Ivanova O.S., Efimov N.N., Khoroshilov A.V., Ivanov V.K. Hydrothermal Synthesis of γ-WO<sub>3</sub> and h-WO<sub>3</sub> Powders in the Presence of Citric Acid and Their Photoprotective Properties. Russ. J. Inorg. Chem., 2022, 67 (6), P. 780–789.

17. Enikeeva M.O., Proskurina O.V., Gerasimov E.Yu., Nevedomskiy V.N., Gusarov V.V. Synthesis under hydrothermal conditions and structural transformations of nanocrystals in the LaPO<sub>4</sub>-YPO<sub>4</sub>-(H<sub>2</sub>O) system. Nanosystems: Phys. Chem. Math., 2023, 14 (6), P. 660–671.

18. Lomakin M.S., Proskurina O.V., Gusarov V.V. Pyrochlore phase in the Bi<sub>2</sub>O<sub>3</sub>-Fe<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub>-(H<sub>2</sub>O) system: its formation by hydrothermal synthesis in the low-temperature region of the phase diagram. Nanosystems: Phys. Chem. Math., 2023, 14 (2), P. 242–253.

19. Bachina A.K., Almjasheva O.V., Popkov V.I. Formation of ZrTiO<sub>4</sub> under Hydrothermal Conditions. Russ. J. Inorg. Chem., 2022, 67, P. 830–838.

20. Prabhakaran T., Mangalaraja R.V., Denardin J.C. Controlling the Size and Magnetic Properties of Nano CoFe<sub>2</sub>O<sub>4</sub> by Microwave Assisted Co-Precipitation Method. Materials Research Express, 2018, 5 (2), 026102.

21. Ivanov V.K., Baranchikov A.E., Vanetsev A.S., Shaporev A.S., Polezhaeva O.S., Tretyakov Yu.D., Fedorov P.P., Osiko V.V. Effect of Hydrothermal and Ultrasonic/Hydrothermal Treatment on the Phase Composition and Micromorphology of Yttrium Hydroxocarbonate. Russ. J. Inorg. Chem., 2007, 52 (9), P. 1321–1327.

22. Khrapova E.K., Kozlov, D.A., Krasilin A.A. Hydrothermal Synthesis of Hydrosilicate Nanoscrolls (Mg<sub>1-x</sub>Co<sub>x</sub>)3Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> in a Na<sub>2</sub>SO<sub>3</sub> Solution. Russian J. of Inorganic Chemistry, 2022, 67 (6), P. 839–849.

23. Enikeeva M.O., Proskurina O.V., Danilovich D.P., Gusarov V.V. Formation of nanocrystals based on equimolar mixture of lanthanum and yttrium orthophosphates under microwave-assisted hydrothermal synthesis. Nanosystems: Phys. Chem. Math., 2020, 11 (6), P. 705–715.

24. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.P. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russian J. of Inorganic Chemistry, 2007, 52, P. 1648–1656.

25. Amin G., Asif M.H., Zainelabdin A., Zaman S., Nur O., Willander M. Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal. Method. J. of Nanomaterials, 2011, 2011, 269692.

26. Zhang A., Zhang J., Cui N., Tie X., An Y., Li L. Effects of pH on Hydrothermal Synthesis and Ccharacterization of Visible-LightDriven BiVO<sub>4</sub> Photocatalyst. J. Mol. Catal. A: Chem., 2009, 304 (1–2), P. 28–32.

27. Shojaee N., Ebadzadeh T., Aghaei A. Effect of Concentration and Heating Conditions on Microwave-Assisted Hydrothermal Synthesis of ZnO Nanorods. Mater. Charact., 2010, 61 (12), P. 1418–1423.

28. Solomatin S.V., Bronich T.K., Bargar T.W., Eisenberg A., Kabanov V.A., Kabanov A.V. Environmentally responsive nanoparticles from block ionomer complexes: effects of pH and ionic strength. Langmuir, 2003, 19 (19), P. 8069–8076.

29. Belous A.G., Pashkova E.V., Elshanskii V.A., Ivanitskii V.P. Effect of precipitation conditions on the phase composition, particle morphology, and properties of iron (III, II) hydroxide precipitates. Inorganic Materials, 2000, 36, P. 343–351.

30. Lomakin M.S., Proskurina O.V., Gusarov V.V. Influence of hydrothermal synthesis conditions on the composition of the pyrochlore phase in the Bi<sub>2</sub>O<sub>3</sub>-Fe<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub> system. Nanosystems: Phys. Chem. Math., 2020, 11 (2), P. 246–251.

31. Du X., Wang Y., Su X., Li, J. Influences of pH value on the microstructure and phase transformation of aluminum hydroxide. Powder Technology, 2009, 192 (1), P. 40–46.

32. Alam M.A., Bishwas R.K., Mostofa S., Jahan S.A. Crystallographic phase stability of nanocrystalline polymorphs TiO<sub>2</sub> by tailoring hydrolysis pH. South African J. of Chemical Engineering, 2024, 49, P. 73–85.

33. Zhang H., Zhang X., Graham T.R., Pearce C.I., Hlushko H., LaVerne J.A., Liu L., Wang S., Zheng S., Clark S.B., Li P., Wang Z., Rosso K.M. Crystallization and phase transformations of aluminum (oxy) hydroxide polymorphs in caustic aqueous solution. Inorganic Chemistry, 2021, 60 (13), P. 9820–9832.

34. Kozerozhets I.V., Semenov E.A., Avdeeva V.V. Ivakin Y.D., Kupreenko S.Y., Egorov A.V., Kholodkova A.A., Vasil’ev M.G., Kozlova L.O., Panasyuk G.P. State and forms of water in dispersed aluminum oxides and hydroxides. Ceramics Int., 2023, 49 (18), P. 30381–30394.

35. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D. P., Gusarov V.V. Influence of hydrothermal treatment conditions on the formation of lanthanum orthophosphate nanoparticles of monazite structure. Russian J. of Applied Chemistry, 2020, 93, P. 540–548.

36. Li N., Yanagisawa K. Controlling the Morphology of Yttrium Oxide through Different Precursors Synthesized by Hydrothermal Method. J. Solid State Chem., 2008, 181 (8), P. 1738–1743.

37. Lu C.H., Yeh C.H. Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceramics Int., 2000, 26 (4), P. 351–357.

38. Khrapova E.K., Kozlov D., Krasilin A.A. Hydrothermal Synthesis of Hydrosilicate Nanoscrolls (Mg1−xCox)3Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> in a Na<sub>2</sub>SO<sub>3</sub>. Solution. Russ. J. Inorg. Chem., 2022, 67, P. 839–849.

39. Skachkov V.M., Pasechnik L A., Medyankina I.S. Hydrothermal Synthesis of Calcium Silicates on the Recovery of Phosphorus from Phosphorite. Russian J. of Inorganic Chemistry, 2023, 68 (11), P. 1532–1536.

40. Chithra M.J., Sathya M., Pushpanathan K. Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metallurgica Sinica (English Letters), 2015, 28, P. 394–404.

41. Syukkalova E.A., Sadetskaya A.V., Demidova N.D., Bobrysheva N.P., Osmolowsky M.G., Voznesenskiy M.A., Osmolovskaya O.M. The effect of reaction medium and hydrothermal synthesis conditions on morphological parameters and thermal behavior of calcium phosphate nanoparticles. Ceramics Int., 2021, 47 (2), P. 2809–2821.

42. Obolenskaya L.N., Kuz’micheva G.M., Savinkina E.V., Sadovskaya N.V., Zhilkina A.V., Prokudina N.A., Chernyshev V.V. Influence of the conditions of the sulfate method on the characteristics of nanosized anatase-type samples. Russian Chemical Bulletin, 2012, 61, P. 2049–2055.

43. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.S., Gusarov V.V. Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO<sub>3</sub>. Russian J. of Inorganic Chemistry, 2021, 66, P. 163–169.

44. Uskokovi˜n V. Disordering the disorder as the route to a higher order: incoherent crystallization of calcium phosphate through amorphous precursors. Crystal Growth & Design, 2019, 19 (8), P. 4340–4357.

45. G´omez L.R., Vega, D.A. Amorphous precursors of crystallization during spinodal decomposition. Physical Review E, 2011, 83 (2), 021501.

46. Vallina B., Rodriguez-Blanco J.D., Brown A.P., Blanco J.A., Benning L.G. The role of amorphous precursors in the crystallization of La and Nd carbonates. Nanoscale, 2015, 7 (28), P. 12166–12179.

47. Krasilin A.A., Almjasheva O.V., Gusarov V.V. Effect of the structure of precursors on the formation of nanotubular magnesium hydrosilicate. Inorg. Mater., 2011, 47 (10), 1111.

48. Popkov V.I., Almjasheva O.V., Schmidt M.P., Gusarov V.V Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russ. J. Gen. Chem., 2015, 85 (6), P. 1370–1375.

49. Galanov S.I., Sidorova O.I. Effect of a precursor on the phase composition and particle size of the active component of Ni-ZrO<sub>2</sub> catalytic systems for the oxidation of methane into syngas. Russian J. of Physical Chemistry A, 2014, 88, P. 1629–1636.

50. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2018, 9 (4), P. 568–572.

51. Yang G., Park S.J. Conventional and microwave hydrothermal synthesis and application of functional materials : A review. Materials, 2019, 12 (7), 1177.

52. Almjasheva O.V., Gusarov V.V. Prenucleation Formations in Control over Synthesis of CoFe<sub>2</sub>O<sub>4</sub> Nanocrystalline Powders. Russian J. of Applied Chemistry, 2016, 89 (6), P. 851–856.

53. Abiev R.Sh. Impinging-Jets Micromixers and Microreactors: State of the Art and Prospects for Use in the Chemical Technology of Nanomaterials (Review). Theor. Found. Chem. Eng., 2020, 54, P. 1131–1147.

54. Abiev R.S., Nikolaev A.M., Kovalenko A.S., Tsvigun N.V., Baranchikov A.E., Kopitsa G.P., Shilova O.A. One step synthesis of FeO<sub>x</sub> magnetic nanoparticles in the microreactor with intensively swirling flows. Chemical Engineering Research and Design, 2024, 205, P. 335–342.

55. Abiev R.S., Almjasheva O.V., Popkov V.I. Proskurina O.V. Microreactor synthesis of nanosized particles: The role of micromixing, aggregation, and separation processes in heterogeneous nucleation. Chemical Engineering Research and Design, 2022, 178, P. 73–94.

56. Wang Y., Guan X., Li L., Li G. pH-driven hydrothermal synthesis and formation mechanism of all BiPO4 polymorphs. Cryst. Eng. Comm., 2012, 14 (23), P. 7907–7914.

57. Elovikov D.P., Nikiforova K.O., Tomkovich M.V., Proskurina O.V., Gusarov V.V. The pH value influence on the waylandite-structured BiAl<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub> compound formation under hydrothermal conditions. Inorganica Chimica Acta, 2024, 561, 121856.

58. Achary S.N., Errandonea D., Mu˜noz A., Rodr´ıguez-Hern´andez P., Manj´on F.J. Krishna P.S.R., Patwe S.J., Grover V., Tyagi A.K. Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Transactions, 2013, 42 (42), P. 14999–15015.

59. Zhao M., Li G., Zheng J., Li L., Wang H., Yang L. Preparation and polymorph-sensitive luminescence properties of BiPO<sub>4</sub>: Eu, Part I: room-temperature reaction followed by a heat treatment. Cryst. Eng. Comm., 2011, 13 (20), P. 6251–6257.

60. Sahu S.P., Qanbarzadeh M., Ateia M., Torkzadeh H., Maroli A.S. Cates E.L. Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi<sub>3</sub>O(OH)(PO<sub>4</sub>)<sub>2</sub> microparticle ultraviolet photocatalyst. Environmental Science & Technology Letters, 2018, 5 (8), P. 533–538.

61. Bentel M.J., Mason M.M. Cates E.L. Synthesis of Petitjeanite Bi<sub>3</sub>O(OH)(PO<sub>4</sub>)<sub>2</sub> Photocatalytic Microparticles: Effect of Synthetic Conditions on the Crystal Structure and Activity toward Degradation of Aqueous Perfluorooctanoic Acid (PFOA). ACS Applied Materials & Interfaces, 2023, 15 (17), P. 20854–20864.

62. Eremin O.V., Yurgenson G.A., Solodukhina M.A., Epova E.S. Hypergene minerals of antimony and bismuth: a method for estimating their standard Gibbs potentials. Mineralogy of technogenesis, 2018, 19, P. 103–131.

63. Shkol’nikov E.V., Elovikov D.P. Thermodynamic calculation of the effect of polymorphism and pH value on the solubility of aluminium oxide and its hydrates in aqueous media, Izvestiya SPbLTA, 231, 2020, P. 209–221 (in Russian).

64. Tuan A.D. Low-temperature hydrothermal synthesis of BiPO<sub>4</sub> for Rhodamine B removal. Vietnam J. of Catalysis and Adsorption, 2022, 11 (3), P. 33–36.

65. Cheng L.W., Tsai J.C., Huang T.Y., Huang C.W., Unnikrishnan B., Lin Y.W. Controlled synthesis, characterization and photocatalytic activity of BiPO<sub>4</sub> nanostructures with different morphologies. Materials Research Express, 2014, 1 (2), 025023.

66. Shi X., Liu Y., Zhang J., Zhang K., Li P., Zuo H., Li J. Effects of pH and Sm<sup>3+</sup> doping on the structure, morphology and luminescence properties of BiPO<sub>4</sub>: Sm<sup>3+</sup> phosphors prepared by hydrothermal method. Ceramics Int., 2015, 41 (2), P. 3162–3168.


Рецензия

Для цитирования:


Еловиков Д.П., Осминина А.А. Роль pH реакционной среды в образовании нанокристаллических фаз в системе Bi2O3-P2O5-H2O. Наносистемы: физика, химия, математика. 2024;15(3):361-368. https://doi.org/10.17586/2220-8054-2024-15-3-361-368

For citation:


Elovikov D.P., Osminina A.A. The role of pH of the reaction medium in the formation of nanocrystalline phases in the Bi2O3-P2O5-H2O system. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):361-368. https://doi.org/10.17586/2220-8054-2024-15-3-361-368

Просмотров: 41


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)