Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Magnetic and photocatalytic properties of BiFeO3 nanoparticles formed during the heat treatment of hydroxides coprecipitated in a microreactor with intense swirling flows

https://doi.org/10.17586/2220-8054-2024-15-3-369-379

Abstract

   In this work, hydroxide deposition in a microreactor with intensively swirling flows was used to obtain BiFeO3, followed by heat treatment of co-precipitated bismuth and iron hydroxides. The study of the formation of nanocrystalline bismuth orthoferrite was carried out using a set of methods: EDXMA, TEM, XRD, 57Fe M¨ossbauer spectroscopy, DRS, etc. The photocatalytic activity and magnetic characteristics of the material were determined. It is shown that during heat treatment of hydroxide precipitation for 1 minute at a temperature of 530 ◦C, BiFeO3 nanocrystals with an average crystallite size of 14 ± 7 nm are formed. It was found that the resulting BiFeO3 nanopowder is represented by agglomerates of individual nanoparticles. The saturation magnetization and residual magnetization values of these bismuth orthoferrite nanoparticles are 2.31 and 0.48 emu/g, respectively. According to the DRS results, band gap energy for the samples calculated at 530, 515, and 500 ◦C were 1.82, 1.86, and 1.91 eV, respectively, which ensures strong absorption of visible light by the samples. The sample showed higher photocatalytic activity in the X-ray amorphous state compared with nanocrystalline BiFeO3 in the process of Fenton-like discoloration of methyl violet under the action of visible light with reaction rate constants of the pseudo-first order 0.0256 and 0.0072 min−1, respectively.

About the Authors

O. V. Proskurina
http://nanojournal.ifmo.ru
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Olga V. Proskurina

St. Petersburg



K. I. Babich
http://nanojournal.ifmo.ru
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Ksenia I. Babich

St. Petersburg



S. M. Tikhanova
http://nanojournal.ifmo.ru
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Sofia M. Tikhanova

St. Petersburg



K. D. Martinson
http://nanojournal.ifmo.ru
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Kirill D. Martinson

St. Petersburg



V. N. Nevedomskiy
http://nanojournal.ifmo.ru
Ioffe Institute
Russian Federation

Vladimir N. Nevedomskiy

St. Petersburg



V. G. Semenov
http://nanojournal.ifmo.ru
St. Petersburg State University
Russian Federation

Valentin G. Semenov

St. Petersburg



R. Sh. Abiev
http://nanojournal.ifmo.ru
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Rufat Sh. Abiev

St. Petersburg



V. V. Gusarov
http://nanojournal.ifmo.ru
Ioffe Institute
Russian Federation

Victor V. Gusarov

St. Petersburg



References

1. Kharbanda S., Dhanda N., Sun A.-C.A., Thakur A., Thakur P. Multiferroic perovskite bismuth ferrite nanostructures : A review on synthesis and applications. Journal of Magnetism and Magnetic Materials, 2023, 572, P. 170569.

2. Krishnamoorthy A., Hannah I., Maruthasalamoorthy S., Nirmala R., Punithavelan N., Navamathavan R. Review – State of the Art of the Multifunctional Bismuth Ferrite: Synthesis Method and Applications. ECS Journal of Solid State Science and Technology, 2022, 11, P. 043010.

3. Ghuge R.S., Shinde M.D., Rane S.B. Bismuth-Based Gas Sensors : A Comprehensive Review. Journal of Electronic Materials, 2021, 50(11), P. 6060–6072.

4. Gervits N.E., Tkachev A.V., Zhurenko S.V., Gunbin A.V., Bogach A.V., Lomanova N.A., Danilovich D.P., Pavlov I.S., Vasiliev A.L., Gippius A.A. The size effect of BiFeO3 nanocrystals on the spatial spin modulated structure. Physical Chemistry Chemical Physics, 2023, 25(37), P. 25526–25536.

5. Kravtsova P.D., Tomkovich M.V., Volkov M.P., Buryanenko I.V., Semenov V.G., Popkov V.I., Lomanova N.A. Magnetic properties of nanocrys-talline materials based on the system (1-x)BiFeO3-(x)YFeO<sub>3</sub>. Physics of the Solid State, 2023, 65(12), P. 2120–2123.

6. Chinchay-Espino H.A., Montes-Albino G.M., Morales-Cruz C.M., Dobbertin-Sanchez S.E., Rojas-Flores S. Effect of Cobalt Substitution on the Structural and Magnetic Properties of Bismuth Ferrite Powders. Crystals, 2022, 12, P. 1058.

7. Zhao X., Menzel S., Polian I., Schmidt H., Du N. Review on Resistive Switching Devices Based on Multiferroic BiFeO<sub>3</sub>. Nanomaterials, 2023, 13, P. 1325.

8. Dang T.T., Schell J., Boa A.G., Lewin D., Marschick G., Dubey A., Escobar-Castillo M., Noll C., Beck R., Zyabkin D.V., Glukhov K., Yap I.C.J., Mokhles G. A., Lupascu D.C. Temperature dependence of the local electromagnetic field at the Fe site in multiferroic bismuth ferrite. Physical Review B, 2022, 106(5), P. 054416.

9. Taha G.M., Rashed M.N., El-Sadek M.S.A., Moghazy M.A.E. Multiferroic BiFeO<sub>3</sub> dithizone functionalized as optical sensor for detection and determination of some heavy metals in environmental samples. Bulletin of Materials Science, 2021, 44(2), P. 122.

10. Ahmed I., Naz I., Morley N., Shabbir S., Maraj M., Ismail A.G., Anwar H., Ahmad F. Experimental and DFT investigation of structural and optical properties of lanthanum substituted bismuth ferrites. Physica B: Condensed Matter., 2023, 661, P. 414927.

11. Nguyen K., Nguyen. C., Pham C., Lim D., Nguyen Q.-B., Le H., Mai N., Dao N. Kinetics and mechanism of photocatalytic degradation of rhodamine B on nanorod bismuth ferrite perovskite prepared by hydrothermal method. Research on Chemical Intermediates, 2022, 49, P. 57–72.

12. Cadenbach T., Sanchez V., Chiquito R´ıos D., Debut A., Vizuete K., Benitez M.J. Hydrothermal Synthesis of Bismuth Ferrite Hollow Spheres with Enhanced Visible-Light Photocatalytic Activity. Molecules, 2023, 28, P. 5079.

13. Zhou T., Zhai T., Shen H., Wang J., Min R., Ma K., Zhang G. Strategies for enhancing performance of perovskite bismuth ferrite photocatalysts (BiFeO<sub>3</sub>) : A comprehensive review. Chemosphere, 2023, 339, P. 139678.

14. Mittal S., Garg S., Bhandari H., Sharma V. A review on recent progressions of Bismuth ferrite modified morphologies as an effective photocatalyst to curb water and air pollution. Inorganic Chemistry Communications, 2022, 144, P. 109834.

15. Ceballos-Sanchez O., Sanchez-Martinez A., Flores- Ruiz F.J., Huerta-Flores A.M., Torres-Mart´ınez L.M., Ruelas R, Garc´ıa-Guaderrama M. Study of BiFeO<sub>3</sub> thin film obtained by a simple chemical method forthe heterojunction-type solar cell design. Journal of Alloys and Compounds, 2020, 832, P. 154923.

16. Eshore A.N., Dey S., Goswami D.K., Guha P.K. Crystallographic Nanojunctions of Bismuth Ferrite for Unconventional Detection of Carbon Monoxide. ACS Applied Nano Materials, 2023, 6(11), P. 9397–9403.

17. Dmonte D.J., Bhardwaj A., Wilhelm M., Fischer T., Kuˇritka I., Mathur S. Sub PPM Detection of NO<sub>2</sub> Using Strontium Doped Bismuth Ferrite Nanostructures. Micromachines, 2023, 14, P. 644.

18. Ji H., Zhang L., Zhang R. Gas sensitive performance and mechanism of multiferroic BiFeO<sub>3</sub> under thermal-magnetic synergetic excitation. Inorganic Chemistry Communications, 2023, 150, P. 110491.

19. Zhang Y., Zhang H., Zhang J., Guo J., Zhang D. Fast Response and Low Detection Limit of Ammonia Sensor Based on WO<sub>3</sub> Nanoparticles-Decorated BiFeO<sub>3</sub> Nanoplates. IEEE Sensors Journal, 2022, 22(15), P. 14736–14742.

20. Egorysheva A.V., Kraev A.S., Gajtko O.M., Baranchikov A.E., Agafonov A.V., Ivanov V.K. Electrorheological Fluids Based on Bismuth Ferrites BiFeO<sub>3</sub> and Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>. Russian Journal of Inorganic Chemistry, 2020, 65(8), P. 1253–1263.

21. Li Y., Zhang X., Chen L., Sun H., Zhang H., Si W., Wang W., Wang L., Li J. Enhanced magnetic and photocatalytic properties of BiFeO<sub>3</sub> nanotubes with ultrathin wall thickness. Vacuum, 2021, 184, P. 109867.

22. Egorysheva A.V., Milenov T.I., Ellert O.G., Avdeev G.V., Rafailov P.M., Efimov N.N., Novotortsev V.M. Magnetic glasseceramics containing multiferroic BiFeO<sub>3</sub> crystals. Solid State Science, 2015, 40, P. 31–35.

23. Gao X., Wang Y., Wang Q., Wu X., Zhang W., Zong M., Zhang L. Facile synthesis of a novel flower-like BiFeO<sub>3</sub> microspheres/graphene with superior electromagnetic wave absorption performances. Ceramics International, 2019, 45(3), P. 3325–3332.

24. Yastrebov S.G., Lomanova N.A. Specific Features in the Interaction between BiFeO<sub>3</sub> Nanoclusters Synthesized by Solution Combustion. Technical Physics Letters, 2021, 47(1), P. 1–4.

25. Alikhanov N.M.-R., Rabadanov M.Kh., Orudzhev F.F., Gadzhimagomedov S.Kh., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO<sub>3</sub>. Journal of Materials Science: Materials in Electronics, 2021, 32, P. 13323–13335.

26. Mhamad S.A., Ali A.A., Mohtar S.S., Aziz F., Aziz M., Jaafar J., Yusof N., Salleh W.N.W., Ismail A.F., Chandren S. Synthesis of bismuth ferrite by sol-gel auto combustion method: Impact of citric acid concentration on its physicochemical properties. Materials Chemistry and Physics, 2022, 282, P. 125983.

27. Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of Nanocrystalline BiFeO<sub>3</sub> under Hydrothermal Conditions. Russian Journal of General Chemistry, 2017, 87(11), P. 2507–2515.

28. Rouhani Z., Karimi-Sabet J., Mehdipourghazi M., Hadi A., Dastbaz A. Response surface optimization of hydrothermal synthesis of Bismuth ferrite nanoparticles under supercritical water conditions: Application for photocatalytic degradation of Tetracycline. Environmental Nanotechnology, Monitoring & Management, 2019, 11, P. 100198.

29. Wang Z.-B., Aldalbahi A., Ahamad T., Alshehri S.M., Feng P.X. Preparation of BiFeO<sub3</sub> and its photoelectric performance as photoanode of DSSC. Ceramics International, 2021, 47(19), P. 27565–27570.

30. Xiaoyan Sun, Zhongwu Liu, Hongya Yu, Zhigang Zheng, Dechang Zeng, Facile synthesis of BiFeO<sub>3</sub> nanoparticles by modified microwave-assisted hydrothermal method as visible light driven photocatalysts. Materials Letters, 2018, 219, P. 225–228.

31. Tuluk A., Brouwer H., van der Zwaag S. Controlling the Oxygen Defects Concentration in a Pure BiFeO<sub>3</sub> Bulk Ceramic. Materials, 2022, 15, P. 6509.

32. Gil-Gonz´alez E., Perej´on A., S´anchez-Jim´enez P.E., Sayagu´es M.J., Raj R., P´erez-Maqueda L.A. Phase-pure BiFeO<sub>3</sub> produced by reaction flash-sintering of Bi<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>. Journal of Materials Chemistry A, 2018, 6(13), P. 5356–5366.

33. Carranza-Celis D., Cardona-Rodr´ıguez A., Narv´aez J., Moscoso-Londono O., Muraca D., Knobel M., Ornelas-Soto N., Reiber A., Ram´ırez J.G. Control of Multiferroic properties in BiFeO<sub>3</sub> nanoparticles. Scientific Reports, 2019, 9, P. 3182.

34. Pedro-Garc´ıa F., S´anchez-De Jes´us F., Cort´es-Escobedo C.A., Barba-Pingarr´on A., Bolar´ın-Mir´o A.M. Mechanically assisted synthesis of multiferroic BiFeO<sub>3</sub>: Effect of synthesis parameters. Journal of Alloys and Compounds, 2017, 711(2004), P. 77–84.

35. Selbach S.M., Einarsrud M.-A., Grande T. On the Thermodynamic Stability of BiFeO<sub>3</sub>. Chemistry of Materials, 2009, 21(1), P. 169–173.

36. Denisov V.M., Belousova N.V., Zhereb V.P., Denisova L.T., Skorikov V.M. Oxide Compounds of Bi<sub>2</sub>O<sub>3</sub>−Fe<sub>2</sub>O<sub>3</sub> System I. The Obtaining and Phase Equilibriums. Journal of Siberian Federal University. Chemistry, 2012, 5(2), P. 146–167.

37. Pikula T., Szumiata T., Siedliska K., Mitsiuk V.I., Panek R., Kowalczyk M., Jartych E. The Influence of Annealing Temperature on the Structure and Magnetic Properties of Nanocrystalline BiFeO<sub>3</sub> Prepared by Sol–Gel Method. Metallurgical and Materials Transactions A, 2022, 53, P. 470–483.

38. Stankiewicz A.I., Moulijn J.A. Process intensification: Transforming chemical engineering. Chemical Engineering Progress, 2000, 96(1), P. 22–34.

39. Abiev R.S. Impinging-Jets Micromixers and Microreactors: State of the Art and Prospects for Use in the Chemical Technology of Nanomaterials (Review). Theoretical Foundations of Chemical Engineering, 2020, 54(6), P. 1131–1147.

40. Proskurina O.V., Sivtsov E.V., Enikeeva M.O., Sirotkin A.A., Abiev R.Sh., Gusarov V.V. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(2), P. 206–214.

41. Bałdyga J., Jasi´nska M., Orciuch W. Barium Sulphate Agglomeration in a Pipe – An Experimental Study and CFD Modeling. Chemical Engineering & Technology, 2003, 26(3), P. 334–340.

42. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13(2), P. 164–180.

43. Proskurina O.V., Abiev R.S., Danilovich D.P., Panchuk V.V., Semenov V.G., Nevedomsky V.N., Gusarov V.V. Formation of nanocrystalline BiFeO<sub>3</sub> during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chemical Engineering and Processing – Process Intensification, 2019, 143, P. 107598.

44. Lomakin M.S., Proskurina O.V., Abiev R.Sh., Leonov A.A., Nevedomskiy V.N., Voznesenskiy S.S., Gusarov V.V. Pyrochlore phase in the Bi<sub>2</sub>O<sub>3</sub>–Fe<sub>2</sub>O<sub>3</sub>–WO<sub>3</sub>–(H<sub>2</sub>O) system: physicochemical and hydrodynamic aspects of its production using a microreactor with intensively swirled flows. Advanced Powder Technology, 2023, 34, P. 104053.

45. Abiev R.Sh., Makusheva I.V. Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in High-Swirl Microreactors. Theoretical Foundations of Chemical Engineering, 2022, 56(2), P. 141–151.

46. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.Sh., Gusarov V.V. Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO<sub>3</sub>. Russian Journal of Inorganic Chemistry, 2021, 66(2), P. 163–169.

47. Proskurina O.V., Abiev R.Sh., Nevedomskiy V.N. Influence of using different types of microreactors on the formation of nanocrystalline BiFeO<sub>3</sub>. Nanosystems: Physics, Chemistry, Mathematics, 2023, 14(1), P. 120–126.

48. Li X., Tang Z., Ma H., Wu F., Jian R. PVP-assisted hydrothermal synthesis and photocatalytic activity of single-crystalline BiFeO<sub>3</sub> nanorods. Applied Physics A, 2019, 125, P. 598.

49. Ortiz-Qui˜nonez J.L., D´ıaz D., Zumeta-Dub´e I., Arriola-Santamar´ıa H., Betancourt I., Santiago-Jacinto P., Nava-Etzana N. Easy Synthesis of High-Purity BiFeO<sub>3</sub> Nanoparticles: New Insights Derived from the Structural, Optical, and Magnetic Characterization. Inorganic Chemistry, 2013, 52(18), P. 10306–10317.

50. Park T.-J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO<sub>3</sub>. Nanoparticles, 2007, 7(3), P. 766–772.

51. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Thermal and magnetic behavior of BiFeO<sub>3</sub> nanoparticles prepared by glycine-nitrate combustion. Journal of Nanoparticle Research, 2018, 20, P. 17.

52. Freitas V.F., Grande H.L.C., de Medeiros S.N., Santos I.A., C´otica L.F., Coelho A.A. Structural, microstructural and magnetic investigations in high-energy ball milled BiFeO<sub>3</sub> and Bi<sub>0.95</sub>Eu<sub>0.05</sub>FeO<sub>3</sub> powders. Journal of Alloys and Compounds, 2008, 461(1-2), P. 48–52.

53. Lomanova N.A., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Bismuth orthoferrite nanocrystals: magnetic characteristics and size effects. Ferroelectrics, 2020. 569(1), P. 240–250.

54. Juwita E., Sulistiani F.A., Darmawan M.Y., Istiqomah N.I., Suharyadi E. Microstructural, optical, and magnetic properties and specific absorption rate of bismuth ferrite/SiO<sub>2</sub> nanoparticles. Materials Research Express, 2022, 9, P. 076101.

55. Ramazanov S., Sobola D., Orudzhev F., Knapek A., Polcak J., Potocek M., Kaspar P., Dallaev R. Surface Modification and Enhancement of Ferromagnetism in BiFeO<sub>3</sub> Nanofilms Deposited on HOPG. Nanomaterials, 2020, 10(10), P. 1990.

56. Thamizharasan G., Eithiraj R.D., Enhtuwshin E., Kim S.J., Sahu N.K., Nayak A.K., Han H.S. Computational and Experimental Study on Electronic Band Structure of Bismuth Ferrite: A Promising Visible Light Photocatalyst. Ceramist, 2020, 23(4), P. 350–357.

57. Wang N., Zheng T., Zhang G., Wang P. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 2016, 4(1), P. 762–787.

58. Mao J., Quan X., Wang J., Gao C., Chen S., Yu H., Zhang Y. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO<sub>3</sub> perovskite for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 2018, 12(6), P. 10.

59. Dhanalakshmi R., Muneeswaran M., Vanga P.R.; Ashok M.; Giridharan N.V. Enhanced photocatalytic activity of hydrothermally grown BiFeO<sub>3</sub> nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework. Applied Physics A, 2016, 122(1), P. 13.

60. Liang C., Liu Y., Li K., Wen J., Xing S., Ma Z., Wu Y. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation. Separation and Purification Technology, 2017, 188, P. 105–111.


Review

For citations:


Proskurina O.V., Babich K.I., Tikhanova S.M., Martinson K.D., Nevedomskiy V.N., Semenov V.G., Abiev R.Sh., Gusarov V.V. Magnetic and photocatalytic properties of BiFeO3 nanoparticles formed during the heat treatment of hydroxides coprecipitated in a microreactor with intense swirling flows. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):369-379. https://doi.org/10.17586/2220-8054-2024-15-3-369-379

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)