Pinned gradient measures of SOS model associated with HA-boundary laws on Cayley trees
https://doi.org/10.17586/2220-8054-2025-16-2-154-163
Abstract
This paper investigates pinned gradient measures for SOS (Solid-On-Solid) models associated with HA-boundary laws of period two, a class that encompasses all 2-height periodic gradient Gibbs measures corresponding to a spatially homogeneous boundary law. While previous research has predominantly focused on a spatially homogeneous boundary law and corresponding GGMs on Cayley trees, this study extends the analysis by providing a comprehensive characterization of such measures. Specifically, it demonstrates the existence of pinned gradient measures on a set of G-admissible configurations and precisely quantifies their number under certain temperature conditions.
Keywords
About the Authors
F. H. HaydarovUzbekistan
Farhod H. Haydarov
9, University str., Tashkent, 100174
54, Mustaqillik Ave., Tashkent, 100007
R. A. Ilyasova
Uzbekistan
Risolat A. Ilyasova
54, Mustaqillik Ave., Tashkent, 100007
University str., 4 Olmazor district, Tashkent, 100174
K. S. Mamayusupov
Uzbekistan
Khudoyor S. Mamayusupov
54, Mustaqillik Ave., Tashkent, 100007
References
1. Friedli S., Velenik Y. Statistical mechanics of lattice systems. A concrete mathematical introduction. Cambridge University Press, Cambridge, 2018.
2. Georgii H.O. Gibbs Measures and Phase Transitions, Second edition. de Gruyter Studies in Mathematics, 9. Walter de Gruyter, Berlin, 2011.
3. Mukhamedov F. Extremality of Disordered Phase of λ-Model on Cayley Trees. Algorithms, 2022, 15(1), 18 pages.
4. Rozikov U.A. Gibbs measures on Cayley trees, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, pp. xviii+385, 2013.
5. Souissi A., Hamdi T., Mukhamedov F, Andolsi A. On the structure of quantum Markov chains on Cayley trees associated with open quantum random walks, Axioms, 2023, 12(9), 864 pages.
6. Zachary S. Bounded, attractive and repulsive Markov specifications on trees and on the one-dimensional lattice. Stochastic Process. Appl., 1985, 20(2), P. 247–256.
7. Funaki T., Spohn H. Motion by mean curvature from the Ginzburg-Landau ∇ϕ interface model. Comm. Math. Phys., 1997, 185.
8. Funaki T. Stochastic interface models. Lectures on Probability Theory and Statistics, Lecture Notes in Math., Springer-Verlag, Berlin, 2015, P. 103–274.
9. Cotar C., Kulske C., Existence of Random Gradient States. ¨ Ann. Appl. Probab., 2012, 22(4), P. 1650–1692.
10. Cotar C., Kulske C., Uniqueness of gradient Gibbs measures with disorder. ¨ Probab. Theory Relat. Fields, 2015, 162, P. 587–635.
11. Van Enter A.C., Kulske C. Non-existence of random gradient Gibbs measures in continuous interface models in ¨ d = 2. Ann. Appl. Probab., 2008, 18, P. 109–119.
12. Henning F., Kulske C. Existence of gradient Gibbs measures on regular trees which are not translation invariant. ¨ Ann. Appl. Probab, 2023, 33(4), P. 3010–3038.
13. Zachary S. Countable state space Markov random fields and Markov chains on trees. Ann. Probab., 1983, 11(4), P. 894–903.
14. Ganikhodjaev N.N., Khatamov N.M., Rozikov U.A. Gradient Gibbs measures of an SOS model with alternating magnetism on Cayley trees. Reports on Mathematical Physics, 2023, 92(3), P. 309–322.
15. Haydarov F.H., Ilyasova R.A., Gradient Gibbs measures with periodic boundary laws of a generalised SOS model on a Cayley tree. J. Stat. Mech. Theory Exp., 2023, vol. 123101, 12 pages.
16. Henning F. Gibbs measures and gradient Gibbs measures on regular trees. PhD Thesis, Ruhr University, 2021, 109 pp.
17. Haydarov F.H., Rozikov U.A. Gradient Gibbs measures of an SOS model on Cayley trees: 4-periodic boundary laws. Reports on Mathematical Physics, 2022, 90(1), P. 81–101.
18. Henning F., Kulske C., Le Ny A., and Rozikov U.A. Gradient Gibbs measures for the SOS model with countable values on a Cayley tree. ¨ Electron. J. Probab, 2019, 24(104), 23 pages.
19. Ilyasova R.A. Height-periodic gradient Gibbs measures for generalised SOS model on Cayley tree. Uzbek Mathematical Journal, 2024, 68(2), P. 92–99.
20. Rozikov U.A. Mirror Symmetry of Height-Periodic Gradient Gibbs Measures of an SOS Model on Cayley Trees. J. Stat. Phys., 2022, 188, 26 pages.
21. Henning F., Kulske C. Height-offset variables and pinning at infinity for gradient Gibbs measures on trees.
22. Kulske C., Schriever P. Gradient Gibbs measures and fuzzy transformations on trees. ¨ Markov Process. Relat. Fields, 2017, 23(4), P. 553–590.
23. Henning F., Kulske C. Coexistence of localized Gibbs measures and delocalized gradient Gibbe measures on trees. ¨ Ann. Appl. Probab, 2021, 31(5), P. 2284–2310.
24. Dobrushin R.L. Description of a random field by means of conditional probabilities and the conditions governing its regularity. Theory Prob. and its Appl., 1968, 13, P. 197–224.
25. Lanford O.E., Ruelle D. Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Physics, 1968, 13, P. 194–215.
26. Ruelle D. Superstable interactions in statistical mechanics. Comm. Math. Physics, 1970, 18, P. 127–159.
27. Khakimov R.M., Haydarov F.H. Translation-invariant and periodic Gibbs measures for the Potts model on the Cayley tree. Theoretical and mathematical physics, 2016, 289, P. 286–295.
28. Prasolov V.V. Polynomials. Springer, Berlin. 2004.
29. Sheffield S. Random surfaces, Large deviations principles and gradient Gibbs measure classifications. PhD Thesis, Stanford University, 2003, 205 pages.
Review
For citations:
Haydarov F.H., Ilyasova R.A., Mamayusupov K.S. Pinned gradient measures of SOS model associated with HA-boundary laws on Cayley trees. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):154-163. https://doi.org/10.17586/2220-8054-2025-16-2-154-163