Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Синтез и исследование наночастиц и наноструктур сульфида никеля для применения в устройствах накопления энергии

https://doi.org/10.17586/2220-8054-2024-15-3-398-409

Аннотация

   Наноструктуры сульфида никеля (NiS) синтезированы простым и дешевым методом горячей инъекции (МГИ). Детально исследовано влияние концентрации серы на композиционные, морфологические, оптические и структурные свойства наночастиц NiS. Рентгеновская дифрактограмма подтверждает образование наночастиц NiS без каких-либо примесей. Спектры комбинационного рассеяния света показывают наличие активных мод NiS в синтезированном материале, полученном при различной концентрации серы. Электрохимические характеристики синтезированного порошка NiS оценены методами циклической вольтамперометрии, гальваностатического заряда-разряда и электрохимической импедансной спектроскопии в электролите КОН. Удельная емкость порошкового электрода NiS была измерена трехэлектродным методом и подтверждает максимальное значение 315.8 Ф/г при скорости сканирования 5 мВ∙с-1. Расчетное значение плотности энергии и плотности мощности порошкового электрода NiS составляет 3.324 Вт∙ч∙кг-1 и 199 Вт∙кг-1 соответственно при меньшей плотности тока. Настоящее исследование предлагает простой и недорогой метод – МГИ, позволяющий контролировать структурные, оптические и морфологические свойства сульфида никеля, и который имеет большой потенциал для синтеза сульфидов других металлов.

Об авторах

М. М. Камбле
http://nanojournal.ifmo.ru
Колледж Анантрао Павара в PDEA
Индия

412115; Пуна; Мулши; Пирангут 



Б. Р. Баде
http://nanojournal.ifmo.ru
Университет Савитрибай Пхуле Пуна
Индия

411007; Пуна



А. В. Рокаде
http://nanojournal.ifmo.ru
Университет Савитрибай Пхуле Пуна
Индия

411007; Пуна



В. С. Ваман
http://nanojournal.ifmo.ru
Современный колледж искусств, науки и коммерции P. E. S.
Индия

411005; Пуна; Шиваджинагар 



С. В. Бангале
http://nanojournal.ifmo.ru
Научный колледж имени Г. М. Ведака
Индия

химический факультет UG и PG; лаборатория химических исследований

402111; Тала-Райгад



С. Р. Ядкар
http://nanojournal.ifmo.ru
Университет Савитрибай Пхуле Пуна
Индия

411007; Пуна



Список литературы

1. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41, P. 797–828.

2. Gao Y.P., Wu X., Huang K.J., Xing L.L., Zhang Y.Y., Liu L. Two-dimensional transition metal diseleniums for energy storage application : a review of recent developments. Cryst. Eng. Comm., 2017, 19, P. 404–418.

3. Parveen N., Ansari M.O., Ansari S.A., Cho M.H. Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. J. Mater. Chem. A, 2016, 4, P. 233–240.

4. Zhang L.L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, 38, P. 2520–2535.

5. De B., Balamurugan J., Kimand N.H., Lee J.H. Enhanced electrochemical and photocatalytic performance of core–shell CuS@ carbon quantum dots@ carbon hollow nanospheres. ACS applied materials & interface, 2017, 9 (3), P. 2459–2468.

6. Guan B.Y., Yu L., Wang X., Song S., Lou X.W. Formation of Onion-Like NiCo<sub>2</sub>S<sub>4</sub> Particles via Sequential Ion-Exchange for Hybrid Supercapacitors. Adv. Mater., 2017, 29, 1605051.

7. Chen H., Jiang J., Zhang L., Xia D., Zhao Y., Guo D., Qi T., Wan H. In situ growth of NiCo<sub>2</sub>S<sub>4</sub> nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources, 2014, 254, P. 249–257.

8. Zhang Z., Wang Q., Zhao C., Min S., Qian X. One-step hydrothermal synthesis of 3D petal-like Co<sub>9</sub>S<sub>8</sub>/RGO/Ni<sub>3</sub>S<sub>2</sub> composite on nickel foam for high-performance supercapacitors. ACS Appl. Mater. Inter., 2015, 7, P. 4861–4868.

9. Gou J., Xie S., Yang Z., Liu Y., Chen Y., Liu Y., Liu C. A high-performance supercapacitor electrode material based on NiS/Ni<sub>3</sub>S<sub>4</sub> composite. Electrochimi. Acta, 2017, 229, P. 299–305.

10. Yang J., Duan X., Guo W., Li D., Zhang H., Zheng W. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy, 2014, 5, P. 74–81.

11. Wang P.T., Zhang X., Zhang J., Wan S., Guo S.J., Lu G., Yao J.L., Huang X.Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun., 2017, 8, 14580.

12. Ye C., Zhang L., Guo C.X., Li D.D., Vasileff A., Wang H.H., Qiao S.Z. A 3D Hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater., 2017, 27 (33), 1702524.

13. Sun H.C., Qin D., Huang S.Q., Guo X.Z., Li D.M., Luo Y.H., Meng Q.B. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci., 2011, 4 (8), P. 2630–3637.

14. Ajibade P.A., Nqombolo A. Synthesis and Structural Studies Of Nickel Sulphide And Palladium Sulphide Nanocrystals. Chalcogenide Letters, 2016, 13 (9), P. 427–434.

15. Salavati-Niasari M., Banaiean-Monfared G., Emadi H., Enhessari M. Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation. Comptes Rendus Chimie, 2013, 16 (10), P. 929–936.

16. Karthikeyan R., Navaneethan M., Archana J., Thangaraju D., Arivanandhan M., Hayakawa Y. Shape controlled synthesis of hierarchical nickel sulfide by the hydrothermal method. Dalton Trans., 2014, 43 (46), P. 17445–17452.

17. Yang P., Song B., Zheng Y., Sun Y., Jian J.K. Solvothermal growth of NiS single-crystalline nanorods. J. Ally Compd., 2009, 481, P. 450–454.

18. Peng L., Ji X., Wan H., Ruan Y., Xu K., Chen C., Miao L., Jiang J. Nickel Sulfide Nanoparticles Synthesized by Microwave-assisted Method as Promising Supercapacitor Electrodes: An Experimental and Computational Study. Electrochimica Acta, 2015, 182, P. 361–367.

19. Kristl M., Dojer B., Gyergyek S., Kristl J. Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon, 2017, 3 (3), e-00273-00292.

20. Kamble M.M., Nasane M.P., Rondiya S.R., Dzade N.Y., Bade B.R., Funde A.M., Kore K.B., Jadkar S.R. Optical, structural and morphological study of CdS nanoparticles: role of sulfur source. Nanomaterials and Energy, 2020, 9 (1), P. 72–81.

21. Karthikeyan R., Thangaraju D., Prakashand N., Hayakawa Y. Single-step synthesis and catalytic activity of structure-controlled nickel sulfide nanoparticles. Cryst. Eng. Comm., 2015, 17, P. 5431–5439.

22. Bishop D.W., Thoms P.S., Ray A.S. Raman Spectra of Nickel(II) Sulfide. Mater. Res. Bull., 1998, 33 (9), P. 1303–1306.

23. Yoshikawa M., Murakami M., Matsuda K., Matsunobe T., Sugie S., Okada K., Ishida H. Characterization of Si nano-polycrystalline films at the nanometer level using resonant Raman scattering. J. Appl. Phys., 2005, 98, P. 63531–63533.

24. Kamble M.M., Waman V.S., Maybadi A., Funde A.M., Sathe V.G., Shripati T., Pathan H.M., Jadkar S.R. Synthesis of cubic nanocrystalline silicon carbide (3C-SiC) films by HW-CVD method. Silicon, 2017, 9 (3), P. 421–429.

25. Chen X.Y., Wang Z.H., Wang X., Wan J.X., Liu J.W., Qian Y.T. A single-source approach to metastable Ni<sub>3</sub>S<sub>4</sub> crystallites and their optical properties. Chem. Lett., 2004, 33 (10), P. 1294–1295.

26. Hu Y.,Chen J.F., Chen W.M., Lin X.H., Li X.L. Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres. Adv. Mater., 2003, 15, P. 726–729.

27. Tauc J. (Ed.) Amorphous and Liquid Semiconductor, Plenum Press, New York, 1974, 159.

28. Yong Xu, Martin A.A. Schoonen. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85, P. 543–556.

29. Darezereshki E., Vakylabad A.B., Hassanzadeh A., Niedoba T., Surowiak A., Koohestani B. Hydrometallurgical Synthesis of Nickel Nano-Sulfides from Spent Lithium-Ion Batteries. Minerals, 2021, 11, P. 419–431.

30. Bobinihi F.F., Fayemi O.E., Onwudiwe D.C. Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate. Materials Science in Semiconductor Processing, 2021, 121, P. 105315–105327.

31. Buchmaier C., Glanzer M., Torvisco A., Poelt P., Wewerka K., Kunert B., Gatterer K., Trimmel G., Rath T. Nickel sulfide thin films and nanocrystals synthesized from nickel xanthate precursors. J. Mater Sci Electronic materials, 2017, 52 (18), P. 1–17.

32. Howatt G., Breckenridg R. Fabrication of Thin ceramic Sheets for Capacitors. J. Brownlow, J. Am. Ceram. Soc., 1947, 30, P. 237–242.

33. Krebs F.C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Solar Energy Materials and Solar Cells, 2009, 93, P. 394–412.

34. Emmenegger C., Mauron P., Sudan P., Wenger P., Hermann V., Gallay R., Zuttel A. Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J. Power Sources, 2003, 124, P. 321–329.

35. Sylla N.F., Ndiaye N.M., Ngom B.D., Momodu D., Madito M.J., Mutuma B.K., Manyala N. Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste. Sci. Rep., 2019, 9 (2019), P. 13673–13688.

36. Kumar Y.A., Rao S.S., Punnoose D., Tulasivarma C.V., Chandu V.V.M. Gopi, Prabakar K., Kim H.J. Influence of solvents in the preparation of cobalt sulfide for supercapacitors. R. Soc. Open Sci., 2017, 4, P. 170427–170438.

37. Marand N.A., Masoudpanah S.M., Alamolhoda S., Bafghi M.Sh. Solution combustion synthesis of nickel sulfide/reduced graphene oxide composite powders as electrode materials for high-performance supercapacitors. J. of Energy Storage, 2021, 39, P. 102637–102644.

38. Meena S., Anantharaju K., Malini S., Dey A., Renuka L., Prashantha S., Vidya Y. Impact of temperature-induced oxygen vacancies in polyhedron MnFe<sub>2</sub>O<sub>4</sub> nanoparticles: As excellent electrochemical sensor, supercapacitor and active photocatalyst. Ceram. Int., 2021, 10, P. 14723–14740.

39. Manohar A., Vijayakanth V., Vattikuti S., Kim K.H. Structural and electrochemical properties of mixed calcium-zinc spinel ferrites nanoparticles. Ceram. Int., 2022, 48 (20), P. 30695–33070.


Рецензия

Для цитирования:


Камбле М.М., Баде Б.Р., Рокаде А.В., Ваман В.С., Бангале С.В., Ядкар С.Р. Синтез и исследование наночастиц и наноструктур сульфида никеля для применения в устройствах накопления энергии. Наносистемы: физика, химия, математика. 2024;15(3):398-409. https://doi.org/10.17586/2220-8054-2024-15-3-398-409

For citation:


Kamble M.M., Bade B.R., Rokade A.V., Waman V.S., Bangale S.V., Jadkar S.R. Synthesis and study of nickel sulfide nanostructures for energy storage device applications. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):398-409. https://doi.org/10.17586/2220-8054-2024-15-3-398-409

Просмотров: 28


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)