Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Влияние слоистых силикатов на морфологические, реологические и механические свойства смеси ПА и ПП

https://doi.org/10.17586/2220-8054-2024-15-3-410-417

Аннотация

   Изучены реологические, морфологические и механические свойства смесей полиамида-6 (ПА) и полипропилена (ПП) в присутствии слоистых силикатов (двух типов органически модифицированного монтмориллонита – Cloisite30B для ПА и Cloisite20A для ПП). Для сравнения мы использовали полипропилен с привитым малеиновым ангидридом (ПП-г-МА) в качестве компатибилизатора, и во всех композициях массовое соотношение ПА и ПП было постоянным 80/20 соответственно. Введение слоистых силикатов всегда приводило к более вязкому расплаву и увеличению модуля упругости. Также установлено, что слоистые силикаты имеют более тонкодисперсную морфологию, чем ПП-г-МА. Модуль упругости и предел текучести увеличивались при введении слоистых силикатов либо в композиты, либо в смеси.

Об авторах

К. Н. Бердиназаров
http://nanojournal.ifmo.ru
Академия наук Узбекистана
Узбекистан

Кодибек Н. Бердиназаров

Институт химии и физики полимеров

100128; ул. А. Кадыри, 7б; Ташкент



Э. О. Хакбердиев
http://nanojournal.ifmo.ru
Академия наук Узбекистана
Узбекистан

Элшод О.  Хакбердиев

Институт химии и физики полимеров

100128; ул. А. Кадыри, 7б; Ташкент



Н. Р. Ашуров
http://nanojournal.ifmo.ru
Академия наук Узбекистана
Узбекистан

Нигмат Р. Ашуров

Институт химии и физики полимеров

100128; ул. А. Кадыри, 7б; Ташкент



Список литературы

1. Begum S.A., Rane A.V., & Kanny K. Applications of compatibilized polymer blends in automobile industry. Compatibilization of polymer blends, 2020, P. 563–593.

2. Annandarajah C., Langhorst A., Kiziltas A., Grewell D., Mielewski D., & Montazami R. Hybrid cellulose-glass fiber composites for automotive applications. Materials, 2019, 12(19), P. 3189.

3. Tokumitsu K., Nakajima Y., & Aoki K. Mechanical properties of PP/PA blends in addition with PP-g-MAH with different PP molecular weight and MAH content. AIP Conference Proceedings, 2016, 1713(1).

4. Sehanobish K. Engineering plastics and plastic composites in automotive applications, 2009, Vol. 122.

5. Occhiello E., Giannotta G., Penco M., Garbassi F. Interfacial adhesion in incompatible polymer blends. First International Congress on Adhesion Science and Technology, 2000, 1(3), P. 693–702.

6. Mostafapoor F., Khosravi A., Fereidoon A., Khalili R., Jafari S.H., Vahabi H., & Saeb M.R. Interface analysis of compatibilized polymer blends. Compatibilization of Polymer Blends, 2020, P. 349–371.

7. Jordan A.M., Kim K., Bates F.S., Macosko C.W., Jaffer S., & Lhost O. Rheological characterization and thermal modeling of polyolefins for process design and tailored interfaces. AIP Conference Proceedings, 2017, 1843(1). AIP Publishing.

8. Ubonnut L., Thongyai S., & Praserthdam P. Interfacial adhesion enhancement of polyethylene–polypropylene mixtures by adding synthesized diisocyanate compatibilizers. Journal of applied polymer science, 2007, 104(6), P. 3766–3773.

9. Ajitha A.R., & Thomas S. Compatibilization of polymer blends. Compatibilization of Polymer Blends, 2019, 640.

10. Zhang W., Gui Z., Lu C., Cheng S., Cai D., & Gao Y. Improving transparency of incompatible polymer blends by reactive compatibilization. Materials Letters, 2013, 92, P. 68–70.

11. Nguyen-Tran H.D., Hoang V.T., Do V.T., Chun D.M., & Yum Y.J. Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials, 2018, 11(3), P. 429.

12. Xu M., Lu J., Qiao Y., Wei L., Liu T., Lee P.C., ... & Park C.B. Toughening mechanism of long chain branched polyamide 6. Materials & Design, 2020, 196, P. 109173.

13. Jang H.G., Yang B., Khil M.S., Kim S.Y., & Kim J. Comprehensive study of effects of filler length on mechanical, electrical, and thermal properties of multi-walled carbon nanotube/polyamide 6 composites. Composites Part A: Applied Science and Manufacturing, 2019, 125, P. 105542.

14. Ghanta T.S., Aparna S., Verma N., & Purnima D. Review on nano- and microfiller-based polyamide 6 hybrid composite: Effect on mechanical properties and morphology. Polymer Engineering & Science, 2020, 60(8), P. 1717–1759.

15. Raji M., Mekhzoum M.E.M., Rodrigue D., & Bouhfid R. Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Composites Part B: Engineering, 2018, 146, P. 106–115.

16. Berdinazarov Q.N., Khakberdiev E.O., Normurodov N.F., & Ashurov N.R. Mechanical and Thermal Degradation Properties of Isotactic Polypropylene Composites with Cloisite15A and Cloisite20A. Bulletin of the University of Karaganda – Chemistry, 2022, 3.

17. Banerjee S.S., Janke A., Gohs U., & Heinrich G. Electron-induced reactive processing of polyamide 6/polypropylene blends: Morphology and properties. European Polymer Journal, 2018, 98, P. 295–301.

18. Hasanpour M., Razavi Aghjeh M.K., Mehrabi Mazidi M., & Afsari B. Effect of morphology alteration on mechanical properties and fracture toughness of polypropylene/polyamide 6/ethylene polypropylene diene monomer graft maleic anhydride (PP/PA6/EPDM-g-MA) reactive ternary blends. Polymer Bulletin, 2020, 77, P. 3767–3794.

19. Afshari M., Kotek R., Haghighat Kish M., Nazock Dast H., & Gupta B.S. Effect of blend ratio on bulk properties and matrix–fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer, 2002, 43(4), P. 1331–1341.

20. Rocha J.A., Steffen T.T., Fontana L.C., & Becker D. Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties. Polymer Bulletin, 2021, 78, P. 5623–5639.

21. Motamedi P., & Bagheri R. Modification of nanostructure and improvement of mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites through variation of processing route. Composites Part B: Engineering, 2016, 85, P. 207–215.

22. Motamedi P., & Bagheri R. Investigation of the nanostructure and mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites. Materials & design, 2010, 31(4), P. 1776–1784.

23. Ou B., Li D., & Liu Y. Compatibilizing effect of maleated polypropylene on the mechanical properties of injection molded polypropylene/polyamide 6/functionalized-TiO<sub>2</sub> nanocomposites. Composites science and technology, 2009, 69(3-4), P. 421–426.

24. Chow W.S., Mohd Ishak Z.A., & Karger-, J. Morphological and rheological properties of polyamide 6/poly (propylene)/organoclay nanocomposites. Macromolecular Materials and Engineering, 2005, 290(2), P. 122–127.

25. Khakberdiev E.O., Berdinazarov Q.N.U., Toshmamatov D.A.U., & Ashurov N.R. Mechanical and morphological properties of poly (vinyl chloride) and linear low-density polyethylene polymer blends. Journal of Vinyl and Additive Technology, 2022, 28(3), P. 659–666.

26. De Almeida F., Correia A., e Silva E.C., Lopes I.C., & Silva F.J.G. Compatibilization effect of organophilic clays in PA6/PP polymer blend. Procedia Manufacturing, 2018, 17, P. 1154–1161.

27. Harrats C., Omonov T., Groeninckx G., & Moldenaers P. Phase morphology development and stabilization in polycyclohexylmethacrylate/polypropylene blends: uncompatibilized and reactively compatibilized blends using two reactive precursors. Polymer, 2004, 45(24), P. 8115–8126.

28. Hsissou R., Bekhta A., Dagdag O., El Bachiri A., Rafik M., & Elharfi A. Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 2020, 6(6).

29. Zeng N., Bai S.L., G’sell C., Hiver J.M., & Mai Y.W. Study on the microstructures and mechanical behaviour of compatibilized polypropylene/polyamide-6 blends. Polymer International, 2002, 51(12), P. 1439–1447.

30. Saikrishnan S., Jubinville D., Tzoganakis C., & Mekonnen T.H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polymer Degradation and Stability, 2020, 182, P. 109390.

31. Aparna S., Purnima D., & Adusumalli R.B. Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends. Polymer-Plastics Technology and Engineering, 2017, 56(6), P. 617–634.

32. Liu L., Qi Z., & Zhu X. Studies on nylon 6/clay nanocomposites by melt-intercalation process. Journal of Applied Polymer Science, 1999, 71(7), P. 1133–1138.


Рецензия

Для цитирования:


Бердиназаров К.Н., Хакбердиев Э.О., Ашуров Н.Р. Влияние слоистых силикатов на морфологические, реологические и механические свойства смеси ПА и ПП. Наносистемы: физика, химия, математика. 2024;15(3):410-417. https://doi.org/10.17586/2220-8054-2024-15-3-410-417

For citation:


Berdinazarov Q.N., Khakberdiev E.O., Ashurov N.R. The effect of layered silicates on the morphological, rheological and mechanical properties of PA and PP blends. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):410-417. https://doi.org/10.17586/2220-8054-2024-15-3-410-417

Просмотров: 30


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)