Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Investigating the sensing performance of silicene nanoribbon towards methanol and ethanol molecules: A computational study

https://doi.org/10.17586/2220-8054-2024-15-3-418-428

Abstract

   In this work, we perform an intricate computational analysis to investigate the adsorption mechanism of human breath exhaled VOCs, namely, methanol and ethanol, along with interfering water vapour on the surface of armchair silicene nanoribbon (ASiNR) by employing density functional theory to analyse the structural, electronic, and transport properties. The findings indicate that the most favorable adsorption configuration for methanol and ethanol involves the hydroxyl group (-OH) oriented towards the silicene surface, after optimisation. Moreover, we have calculated the adsorption energies which shows that ethanol is strongly physisorbed than methanol and water molecules on the ASiNR surface. Apart from that, the results of IV characteristics, transmission spectra and density of states corroborate these observations. In addition, we have computed the sensitivity (%), the results of which revealed that methanol demonstrates a high sensitivity of 42 % compared to other molecules towards the surface of ASiNR. Furthermore, the recovery time of the sensor was found to be extremely long, which indicates that ASiNR based device has great potential for use as disposable sensors and scavengers for toxic gas molecules.

About the Authors

Sh. Showket
http://nanojournal.ifmo.ru
University of Kashmir
India

Shazia Showket

Department of Physics

J&K–190006; Srinagar



Kh. A. Shah
http://nanojournal.ifmo.ru
Cluster University Srinagar
India

Khurshed A. Shah, Postgraduate

Sri Pratap College; Department of Physics

J&K–190001; Srinagar



Gh. N. Dar
http://nanojournal.ifmo.ru
University of Kashmir
India

Ghulam N. Dar

Department of Physics

J&K–190006; Srinagar



M. A. Andrabi
http://nanojournal.ifmo.ru
University of Kashmir
India

Muzaffar Ali Andrabi

Institute of Technology; Department of Applied Sciences

J&K–190006; Srinagar



References

1. Sun X., Shao K., Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Analytical and Bioanalytical Chemistry, 2016, 408, P. 2759–2780.

2. Mehdi Aghaei S., Aasi A., Panchapakesan B. Experimental and theoretical advances in MXene-based gas sensors. ACS Omega, 2021, 6 (4), P. 2450–2461.

3. Aasi A., Mehdi Aghaei S., Panchapakesan B. Outstanding performance of transition-metal-decorated single-layer graphene-like BC6N nanosheets for disease biomarker detection in human breath. ACS Omega, 2021, 6 (7), P. 4696–4707.

4. Das S., Pal M. Non-invasive monitoring of human health by exhaled breath analysis : A comprehensive review. J. of The Electrochemical Society, 2020, 167 (3), 037562.

5. Hakim M., Broza Y.Y., Barash O., Peled N., Phillips M., Amann A., Haick H. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev., 2012, 112, P. 5949–5966.

6. Kim J.S., Yoo H.W., Choi H.O., Jung H.T. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS<sub>2</sub>. Nano Letters, 2014, 14 (10), P. 5941–5947.

7. Chatterjee S., Castro M., Feller J.F. An e-nose made of carbon nanotube-based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. J. of Materials Chemistry B, 2013, 1 (36), P. 4563–4575.

8. Deng C., Zhang J., Yu X., Zhang W., Zhang X. Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. of Chromatography B, 2004, 810 (2), P. 269–275.

9. Aghaei S.M., Aasi A., Farhangdoust S., Panchapakesan B. Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: A DFT study. Applied Surface Science, 2021, 536, 147756.

10. Boots A.W., van Berkel J.J., Dallinga J.W., Smolinska A., Wouters E.F., van Schooten F.J. The versatile use of exhaled volatile organic compounds in human health and disease. J. of breath research, 2012, 6 (2), 027108.

11. Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 2000, 34 (12–14), P. 2063–2101.

12. Nagarajan V., Chandiramouli R.. First-Principles Investigation on Interaction of NH<sub>3</sub> Gas on a Silicene Nanosheet Molecular Device. IEEE Trans. Nanotechnology, 2017, 16, P. 445–452.

13. Jariwala D., Sangwan V.K., Lauhon L.J., Marks T.J., Hersam M.C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014, 8, P. 1102–1120.

14. Nagarajan V., Chandiramouli R. CO and NO monitoring using pristine germanene nanosheets: DFT study. J. Mol. Liq., 2017, 234, P. 355–363.

15. Nagarajan V., Chandiramouli R. Investigation of electronic properties and spin-orbit coupling effects on passivated stanene nanosheet: A first-principles study. Superlattices Microstruct., 2017, 107, P. 118–126.

16. Ni Z., Liu Q., Tang K., Zheng J., Zhou J., Qin R., Gao Z., Yu D., Lu J. Tunable bandgap in silicene and germanene. Nano Letters, 2012, 12, P. 113–118.

17. Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle A., Akinwande D. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 2015, 10, P. 227–231.

18. Tsai W.F., Huang C.-Y., Chang T.-R., Lin H., Jeng H.-T., Bansil A. Gated silicene as a tunable source of nearly 100 % spin-polarized electron. Nat. Commun., 2013, 4 P. 1–6.

19. Sadeghi H., Bailey S., Lambert C.J. Silicene-based DNA nucleobase sensing. Applied Physics Letters, 2014, 104, 103104.

20. Gao N., Zheng W.T., Jiang Q. Density functional theory calculations for two-dimensional silicene with halogen functionalization. Physical Chemistry Chemical Physics, 2012, 14, P. 257–261.

21. Lopez-Bezanilla A. Substitutional doping widens silicene gap. J. Phys. Chem. C, 2014, 118, P. 18788–18792.

22. Gao N., Li J.C., Jiang Q. Bandgap opening in silicene: Effect of substrates. Chem. Phys. Lett., 2014, 592, P. 222–226.

23. Pan F., Wang Y., Jiang K., Ni Z., Ma J., Zheng J., Quhe R., Shi J., Yang J., Chen C., Lu J. Silicene nanomesh. Scientific Reports, 2015, 5, 9075.

24. Aghaei S.M., Monshi M.M., Torres I., Calizo I. Edge functionalization and doping effects on the stability, electronic and magnetic properties of silicene nanoribbons. RSC advances, 2016, 6, P. 17046–17058.

25. Aghaei S.M., Calizo I. Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes. J. Appl. Phys., 2015, 118, 104304.

26. Kharadi M.A., Malik G.F., Shah K.A., Khanday F.A. Performance analysis of functionalized silicene nanoribbon-based photodetector. Int. J. of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, e2809.

27. Masson L., Pr´evot G. Epitaxial growth and structural properties of silicene and other 2D allotropes of Si. Nanoscale Advances, 2023, 5 (6), P. 1574–1599.

28. Meng L., Wang Y., Zhang L., Du S., Wu R., Li L., Zhang Y., Li G., Zhou H., Hofer W.A., Gao M.J. Buckled silicene formation on Ir (111). Nano Letters, 2013, 13 (2), P. 685–690.

29. Fleurence A., Friedlein R., Ozaki T., Kawai H., Wang Y., Takamura Y. Experimental evidence for epitaxial silicene on diboride thin films Phys. Rev. Letters, 2012, 108 (24), 24550.

30. Aizawa T., Suehara S., Otani S. Silicene on zirconium carbide (111). J. Phys. Chem. C, 2014, 118 (40), 23049.

31. Wang X.Q., Li H.D., Wang J.T. Induced ferromagnetism in one-side semi-hydrogenated silicene and germanene. Phys. Chem. Chem. Phys., 2012, 14 (9), P. 3031–3036.

32. Zheng F.B., Zhang C.W. The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res. Letters, 2012, 7, P. 1–5.

33. Liu C., Feng W., Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Letters, 2011, 107 (7), 076802.

34. Xu C., Luo G., Liu Q., Zheng J., Zhang Z., Nagase S., Gao Z., Lu J. Giant magnetoresistance in silicene nanoribbons. Nanoscale, 2012, 4, P. 3111–3317.

35. Chen L., Feng B., Wu K. Observation of a possible superconducting gap in silicene on Ag (111), surface. Appl. Phys. Letters, 2013, 102 (8), 081602.

36. Aufray B., Kara A., Vizzini S., Oughaddou H., Leandri C., Ealet B., Le Lay G. Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene. Applied Physics Letters, 2010, 96 (18), 183102.

37. De Padova P., Quaresima C., Ottaviani C., Sheverdyaeva P.M., Moras P., Carbone C., Topwal D., Olivieri B., Kara A., Oughaddou H., Aufray B., Le Lay G. Evidence of graphene-like electronic signature in silicene nanoribbons. Applied Physics Letters, 2010, 96 (26), 261905.

38. De Padova P., Kubo O., Olivieri B., Quaresima C., Nakayama T., Aono M., Le Lay G. Multilayer silicene nanoribbons. Nano Letters, 2012, 12 (11), P. 5500–5503.

39. Tchalala M.R., Enriquez H., Mayne A.J., Kara A., Roth S., Silly M.G., Bendounan A., Sirotti F., Greber T., Aufray B., Dujardin G., Ali M.A., Oughaddou H. Formation of one-dimensional self-assembled silicon nanoribbons on Au (110),-(2× 1). Applied Physics Letters, 2013, 102 (8), 083107.

40. Zha D., Chen C., Wu J. Electronic transport through a silicene-based zigzag and armchair junction. Solid State Communications, 2015, 219, P. 21–24.

41. Houssa M., van den Broek B., Scalise E., Pourtois G., Afanasev V.V., Stesmans A. An electric field tunable energy band gap at silicene/ (0001), ZnS interfaces. Physical Chemistry Chemical Physics, 2013, 15 (11), P. 3702–3705.

42. Prasongkit J., Amorim R.G., Chakraborty S., Ahuja R., Scheicher R.H., Amornkitbamrung V. Highly Sensitive and Selective Gas Detection Based on Silicene. J. Phys. Chem. C, 2015, 119, P. 16934–16940.

43. Nagarajan V., Chandiramouli R. First-Principles Investigation on Interaction of NH<sub>3</sub> Gas on a Silicene Nanosheet Molecular Device. IEEE Trans. Nanotechnology, 2017, 16, P. 445–452.

44. Walia G.K., Randhawa D.K.K. Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution. Struct. Chem., 2018, 29, P. 1893–1902.

45. Pham T.L., Ta T.L., Vo V.O., Dinh V.A. DFT Study on Adsorption of Acetone and Toluene on Silicene. VNU J. of Science: Mathematics-Physics, 2020, 36, P. 95–102.

46. Vo V.O., Pham T.L., Dinh V.A. Absorption of Isopropanol on Surface of Defect Silicene. VNU J. of Science: Mathematics-Physics, 2020, 36, P. 92–99.

47. Showket S., Shah K.A., Dar G.N. Pristine and Modified Silicene based Volatile Organic Compound Toxic Gas Sensor: A First Principles Study. Physica Scripta, 2023, 98, 085937.

48. Agrawal S., Kaushal G., Srivastava A. Electron transport in C3N monolayer: DFT analysis of volatile organic compound sensing. Chemical Physics Letters, 2021, 762, 138121.

49. Aasi A., Aghaei S.M., Bajgani S.E., Panchapakesan B. Computational Study on Sensing Properties of Pd?Decorated Phosphorene for Detecting Acetone, Ethanol, Methanol, and Toluene: A Density Functional Theory Investigation. Advanced Theory and Simulations, 2021, 4, 2100256.

50. Pu K., Dai X., Bu Y., Guo R., Tao W., Jia D., Song J., Zhao T., Feng L. Al-doped GeS nanosheet as a promising sensing material for O-contained volatile organic compounds detection. Applied Surface Science, 2020, 527, 146797.

51. Singsen S., Watwiangkham A., Ngamwongwan L., Fongkaew I., Jungthawan S., Suthirakun S. Defect Engineering of Green Phosphorene Nanosheets for Detecting Volatile Organic Compounds: A Computational Approach. ACS Applied Nano Materials, 2023, 6, P. 1496–1506.

52. Nagarajan V., Dharani S., Chandiramouli R. Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comput. Theor. Chem., 2018, 1125, P. 86–94.

53. Nagarajan V., Chandiramouli R. MoSe2 nanosheets for detection of methanol and ethanol vapors: a DFT study. J. of Molecular Graphics and Modelling, 2018, 81, P. 97–105.

54. Gani M., Shah K.A., Parah S.A. Realization of a sub-10 nm silicene magnetic tunnel junction and its application for magnetic random access memory and digital logic. IEEE Transactions on Nanotechnology, 2021, 20, P. 466–473.

55. URL: https://synopsys.com/silicon/quantumatk.html Synopsys Quantum ATK, P-2019.03, 2019.

56. Zeng M., FengY., Liang G. Graphene-based spin caloritronics. Nano Letters, 2011 ,11, P. 1369–1373.

57. Perdew J.P., Burke K., Ernzerhof M. Generalised gradient approximation made simple. Phys. Rev. Lett., 1996, 77, P. 3865–3868.

58. Abadir G.B., Walus K., Pulfrey D.L. Basis-set choice for DFT/ NEGF simulations of carbon nanotubes. J. Comp. Electron., 2009, 8, P. 1–9

59. Yamacli S. Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons. J. Nanopart. Res., 2014, 16, 2576.

60. Srivastava P., Jaiswal N.K., Tripathi G.K. Chlorine sensing properties of zigzag boron nitride nanoribbons. Solid State Commun., 2014, 185, P. 41–46.

61. Wei X.L., Chen Y.P., Liu W.L., Zhong J.X. Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons. Phys. Lett. A, 2012, 376, P. 559–562.

62. Aghaei S.M., Monshi M.M., Calizo I. A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor. RSC, 2016, 6, P. 94417–94428.

63. Ding Y., Ni J. Electronic structures of silicon nanoribbons. Applied Physics Letters, 2009, 95, 083115.

64. Davila M.E., Marele A., De Padova P., Montero I., Hennies F., Pietzsch A., Shariati M.N., Gomez Rodriguez J.M., Le Lay G. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag (110). Nanotechnology, 2012, 23, 385703.

65. Osborn T.H., Farajian A.A., Pupyesheva O.V., Aga R.S., Voon L.L.Y. Ab initio simulations of silicene hydrogenation. Chem. Phys. Lett., 2011, 511, P. 101–105.

66. Naqash A.N., Shah K.A., Sheikh J.A., Kumbhani B., Andrabi S.M. Transport properties of GaAs Co-doped H-passivated low-buckled and high-buckled zigzag silicene nanoribbon two probe devices. Nanosystems: Physics, Chemistry, Mathematics, 2023, 14 (4), P. 438–446.

67. Walia G.K., Randhawa D.K.K. Electronic and transport properties of silicene-based ammonia nanosensors: an ab initio study. Structural Chemistry, 2018, 29, P. 257–265.

68. Walia G.K., Randhawa D.K.K. Gas sensing properties of armchair silicene nanoribbons towards carbon-based gases with single molecule resolution. Structural Chemistry, 2018, 29, 1893.

69. Wang X., Liu H., Tu S.T. Study of formaldehyde adsorption on silicene with point defects by DFT method. RSC Advances, 2015, 80, P. 65255–65263.


Review

For citations:


Showket Sh., Shah Kh.A., Dar G.N., Andrabi M.A. Investigating the sensing performance of silicene nanoribbon towards methanol and ethanol molecules: A computational study. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):418-428. https://doi.org/10.17586/2220-8054-2024-15-3-418-428

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)