Translation-invariant p-adic quasi Gibbs measures for the Potts model with an external field on the Cayley tree
https://doi.org/10.17586/2220-8054-2025-16-2-164-175
Abstract
The study is focused on investigation of p-adic Gibbs measures for the q-state Potts model with an external field and determination of the conditions for the existence of a phase transition. In this work, we derive a functional equation that satisfies the compatibility condition for p-adic quasi-Gibbs measures on a Cayley tree of order k ≥ 2. Furthermore, we prove that if |q|p = 1 there exists a unique p-adic Gibbs measure for this model. Additionally, for the Potts model on a binary tree, we identify three p-adic quasi-Gibbs measures under specific circumstances: one bounded and two unbounded, which implies a phase transition.
Keywords
About the Authors
M. M. RakhmatullaevUzbekistan
Muzaffar M. Rakhmatullaev
University str. 9, 100174,Tashkent
100000, Tashkent, Uzbekistan
N. D. Samijonova
Uzbekistan
Nurkhon D. Samijonova –
161, Boburshox str, 160107, Namangan
References
1. Esfarjani K., Ali Mansoori G., Statistical Mechanical Modeling and Its Application to Nanosystems, Handbook of Theoretical and computational Nanotechnology, 2004, pp. 45.
2. Hill L. Thermodynamics of Small Small Systems, Benjamin, New York, 1963, pp. 417.
3. Hill T.L. A different approach to nanothermodynamics, Nano Lett., 2001, 1(5).
4. Onsager L., Machlup S. Phys. Verhandlungen, 1952, 3(84).
5. Prigogine I. Introduction to Thermodynamics of Irreversible Processes. Wiley, New York, 1967, pp. 147.
6. Feynman R.P. There’s Plenty of Room at the Bottom. Eng. Sci. Mag., 1960, 23(5), P. 22–36.
7. Volovich I.V. p-Adic String. Classical Quantum Gravity, 1987, 4, P. 83–87.
8. Derrida B., Seze De.L., Itzykson C. Fractal structure of zeros in hierarchical models, J. Stat. Phys., 1983, 33, P. 559–569.
9. Potts R.B. Some generalized order-disorder transformations. Proc.Camb.Phil.Soc., 1952, 48(1), P. 106–109.
10. Rozikov U.A. Gibbs measures in biology and physics: The Potts model. World. Sci. publ., Singapore 2023.
11. Wu F.Y. The Potts model, Rev. Mod. Phys., 1982, 54, P. 235.
12. Ganikhodjaev N.N., Rahmatullaev M.M. and Mohd Hirzie Bin Mohd Rodzhan, Weakly periodic Gibbs measures of the Ising model on the Cayley tree of order five and six. Math. Phys. Anal. Geom., 2018, 21(2).
13. Khatamov N.M. Holliday junctions in the HC Blume-Capel model in ”one case” on DNA. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(5), P. 563–568.
14. Rahmatullaev M.M., Egamov D.O. Translation-invariant Gibbs measures for the mixed spin-1/2 and spin-1 Ising model with an external field on a Cayley tree. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15(5), P. 576–585.
15. Rahmatullaev M.M. Ising model on trees: (k0) – non translation-invariant Gibbs measures. Journal of Physics Conference Series 2019, 1(819).
16. Rukiah bin Ali, Mukhamedov F. Chin Hee Pah Ising Model with Competing Interactions on Cayley Tree of Order 4: An Analytic Solution. J. Phys.: Conf.Ser., 2013, 435, P. 012–032.
17. Ganikhodjaev N.N., Mukhamedov F.M. and Rozikov U.A. Existence of a phase transition for the Potts p-adic model on the set Z. Theor. Math. Phys., 2002, 130, P. 425–431.
18. Ganikhodjaev N.N., Rozikov U.A. The Potts model with countable set of spin values on a Cayley tree, Lett. Math. Phys., 2006, 75, P. 99–109.
19. Rozikov U.A., Rahmatullaev M.M., Khakimov R.M. Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree. Theor. Math. Phys., 2022, 210(1), P. 135–153.
20. Khakimov O. On a generalized p-adic Gibbs measure for Ising model on trees. p-Adic Numbers, Ultrametric Anal. Appl., 2014, 6(3), P. 207–217.
21. Mukhamedov F., Rozikov U.A. On Gibbs measure of p-adic Potts model on the Cayley tree. Indag. Math. N. S., 2004, 15(1), P. 85–99.
22. Rozikov U.A., Khakimov O.N. Description of all translation-invariant p-adic Gibbs measures for the Potts model on the Cayley tree. Markov Proces.Rel.Fields, 2015, 21, P. 177–204.
23. Tukhtabaev A.M. On G2-Periodic Quasi Gibbs Measures of p-Adic Potts Model on a Cayley Tree. p-Adic Numbers, Ultrametric Analy. Appl., 2021, 13(4), P. 291–307.
24. Mukhamedov F. On dynamical systems and phase transitions for q + 1 state p-adic Potts model on Cayley tree. Math.Phys.Anal.Geom., 2013, 26, P. 49–87.
25. Rahmatullaev M.M., Abdukaxorova Z.T. HA-weakly periodic p-adic generalized Gibbs measures for Ising model on a Cayley tree. Lobachevskii Journal of Mathematics, 2024, 1(24), P. 504–517.
26. Rahmatullaev M.M., Khakimov O.N., Tukhtaboev A.M. A p-adic generilazed Gibbs measure for the Ising model on a Cayley tree. Theor. Math.Phys., 2019, 1(201), P. 1521–1530.
27. Rahmatullaev M.M., Tukhtabaev A.M. Non periodic p-adic generilazed Gibbs measure for the Ising model. p-Adic Numbers Ultrametric Anal. Appl., 2019, 11, P. 319–327.
28. Rahmatullaev M., Tukhtabaev A., Samijonova N. Weakly periodic p-adic quasi Gibbs measures for the Potts model on a Cayley tree. Lett. Math. Phys., 2024, 114(6).
29. Rahmatullaev M., Abdukaxorova Z. HA-weakly periodic p-adic generalized Gibbs measures for the p-Adic Ising model on the Cayley tree of order two. p-Adic Numbers, Ultrametric Anal. Appl., 2024, 3(16), P. 233–263.
30. Mukhamedov F., Rahmatullaev M., Tukhtabaev A., Mamadjonov R. On p-adic Ising model with external field on a Cayley tree: Periodic Gibbs measures. Theor. Math. Phys., 2023, 216(2), P. 383–400.
31. Rahmatullaev M.M., Abdukaxorova Z.T., ”On HA-weakly periodic p-adic generalized Gibbs measures for the p-adic Ising model with an external field on the Cayley tree of order two”. Rep. Math. Phys., 2025, 95(1), P. 93–106.
32. Rosen K.H. Elementary Number Theory and Its Applications, 1986, pp. 452. Addison-Westley, Canada.
33. Vladimirov V.S., Volovich I.V. and Zelenov E.I. p-Adic analysis and Mathematical physics. World Scientific, Singapoure 1994.
34. Koblitz N. p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, Springer, Berlin 2004, pp. 166.
35. Mukhamedov F., Khakimov O. On equation x k = a over Qp and its applications. Izvestiya Math., 2020, 84(2), P. 348–360.
36. Khrennikov A.Yu., Nilson M. p-Adic Deterministic and Random Dynamical Systems, Kluwer. Dordreht 2004, pp. 270.
37. Volovich I.V. Number theory as the ultimate physical theory. p-Adic Numbers Ultrametric Anal.App., 2010, 2(1), P. 77–87.
38. Khrennikov A.Yu. p-adic valued probability measures. Indag.Mathem.N.S., 1996, 7, P. 311–330.
39. Mukhamedov F. On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree. p-Adic Numbers Utrametric Anal.Appl., 2010, 2(3), P. 241–251.
40. Ganikhodjaev N.N., Mukhamedov F.M., Rozikov U.A. Phase transitions of the Ising model on Z in the p-adic number field. Uzbek. Math. Jour., 1998, 4, P. 23–29.
41. Khrennikov A.Yu., Ludkovsky S. Stochastic process on non-Archimedean space with values in non-Archimedean fields. Markov Proces. Releated Fields 2003, 9(1), P. 131–162.
42. Mukhamedov F., Omirov B., Saburov M. On cubic equations over p-adic fields. Inter. J. Number Theory., 2014, 10, P. 1171–1190.
43. Ahmad M.A.Kh., Saburov M. The number of solution of qubic equation over Q3. Sains Malaysiana 2015, 44(5), P. 765–769.
44. Tukhtabaev A.M., Bunazarov X.K. Some problems related to the square root in the field Qp. B.I.M., 2021, 3(4), P. 1–5.
45. Ludkovsky S.V. Non-Archimedean valued quasi-invariant descending at infinity measures. Int. J. Math. Math. Sci., 2005, 23.
Review
For citations:
Rakhmatullaev M.M., Samijonova N.D. Translation-invariant p-adic quasi Gibbs measures for the Potts model with an external field on the Cayley tree. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):164-175. https://doi.org/10.17586/2220-8054-2025-16-2-164-175