Hybrid quantum communication protocol for fiber and atmosphere channel
https://doi.org/10.17586/2220-8054-2024-15-5-654-657
Abstract
In this paper, we explore a hybrid quantum communication protocol that operates concurrently over fiber optic and atmospheric channels. This new protocol addresses challenges in urban settings where laying optical fiber may be impractical or costly. By integrating the subcarrier wave (SCW) quantum key distribution (QKD) with phase coding, our approach enhances the flexibility and reliability of quantum communication systems. We have developed and tested an atmospheric optical module equipped with an auto-tuning system to ensure precise optical axis alignment, crucial for minimizing signal loss in turbulent environments. Experimental results demonstrate stable sifted key rates and low quantum bit error rate (QBER) across various channel lengths, confirming the efficacy of our hybrid protocol in securing communication over diverse transmission environments.
About the Authors
Ilnur Z. LatypovRussian Federation
Ilnur Z. Latypov
ul. Lobachevskogo, 2/31, POB 261, Kazan, 420111
Vladimir V. Chistyakov
Russian Federation
Vladimir V. Chistyakov
49, St. Petersburg, 197101; 6 Line, 59, St. Petersburg, 199178
Maxim A. Fadeev
Russian Federation
Maxim A. Fadeev
49, St. Petersburg, 197101; Skolkovo, Moscow 121205
Danil V. Sulimov
Russian Federation
Danil V. Sulimov
Kronverkskiy, 49, St. Petersburg, 197101
Alexey K. Khalturinsky
Russian Federation
Alexey K. Khalturinsky
6 Line, 59, St. Petersburg, 199178
Sergey M. Kynev
Russian Federation
Sergey M. Kynev
49, St. Petersburg, 197101; 6 Line, 59, St. Petersburg, 199178
Vladimir I. Egorov
Russian Federation
Vladimir I. Egorov
6 Line, 59, St. Petersburg, 199178
References
1. Honjo T., Nam S.W., Takesue H., Zhang Y., Hadfield R.H., Dardy H.H., and Yamamoto Y. Long-distance entanglement-based quantum key distribution over optical fiber. Optics Express, 2008, 16(23), P. 19118–19126.
2. Rosenberg D., Harrington J.W., Rice P.R., Hiskett P.A., Peterson C.G., Hughes R.J., Lita A.E., Nam S.W., and Nordholt J.E. Long-distance decoy-state quantum key distribution in optical fiber. Physical Review Letters, 2007, 98(1), P. 010503.
3. Cao Y., Li Z., Zhang W., You Z., Zhang X., Wang Z., Huang C., Li H.W., and Guo G.C. Long-distance free-space measurement-device-independent quantum key distribution. Physical Review Letters, 2020, 125(26), P. 260503.
4. Pirandola S. Limits and security of free-space quantum communications. Physical Review Research, 2021, 3(1), P. 013279.
5. Schmitt-Manderbach T., Weier H., Fuurst M., Ursin R., Tiefenbacher F., Scheidl T., Perdigues J., Sodnik Z., Kurtsiefer C., and Weinfurter H. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Physical Review Letters, 2007, 98(1), P. 010504.
6. Cao Y., Zhang Z., Xu B., You L., Wang Z., and Li H. W. The evolution of quantum key distribution networks: On the road to the qinternet. IEEE Communications Surveys & Tutorials, 2022, 24(2), P. 839–894.
7. Techateerawat P. Simulating Network Management System for Quantum Key Distribution based on rural and remote broadband in Thailand. PBRU Science Journal, 2023, 20(1), P. 97–110.
8. Kynev S.M., Chistyakov V.V., Fadeev M.A., and Latypov I.Z. Free-space subcarrier wave quantum communication. Journal of Physics: Conference Series. IOP Publishing, 2017, 917(5), P. 052003.
Review
For citations:
Latypov I.Z., Chistyakov V.V., Fadeev M.A., Sulimov D.V., Khalturinsky A.K., Kynev S.M., Egorov V.I. Hybrid quantum communication protocol for fiber and atmosphere channel. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):654-657. https://doi.org/10.17586/2220-8054-2024-15-5-654-657