Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A model of charged particle on the flat Mobius strip in a magnetic field

https://doi.org/10.17586/2220-8054-2023-14-4-418-420

Abstract

The spectral problem for the Schrodinger operator with a magnetic field on the flat M ¨ obius strip is ¨ considered. The model construction is described. It is compared with the case of the Laplace operator. 

About the Author

I. Y. Popov
ITMO University
Russian Federation

Igor Y. Popov – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



References

1. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., S. von Molnar, Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294, P. 1488–1495.

2. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2010.

3. von Klitzing K., Dorda G., Pepper M. New method for high-accuracy determination of the fine structure constant based on quantised Hall resistance. Phys. Rev. Lett., 1980, 45(6), P. 494–497.

4. Ando T. Edge states in quantum wires in high magnetic fields. Phys. Rev. B, 1990, 42(9), P. 5626–5634.

5. Buttiker M. Transmission probabilities and the quantum Hall effect. ¨ Surface Science, 1990, 229, P. 201–208.

6. Ekholm T., Kovarik H. Stability of the magnetic Schrodinger operator in a waveguide. ¨ Commun in Part. Diff. Eq., 2005, 30, P. 539–565.

7. Exner P., Kovarik H. Quantum waveguides. Springer, Berlin, 2015.

8. Borisov D., Ekholm T., Kovarik H. Spectrum of the magnetic Schrodinger operator in a waveguide with combined boundary conditions. ¨ Ann. Henri Poincare, 2005, 6, P. 327–342.

9. Briet P., Raikov G., Soccorsi E. Spectral Properties of a Magnetic Quantum Hamiltonian on a Strip. Asymptotic Analysis, 2008, 58(3), P. 127–155.

10. Bruneau V., Popoff N. On the ground state energy of the Laplacian with a magnetic field created by a rectilinear current. J. Functional Analysis, 2015, 268, P. 1277–1307.

11. Geniet P. On a quantum Hamiltonian in a unitary magnetic field with axisymmetric potential. J. Math. Phys., 2020, 61, P. 082104.

12. Geiler V. A., Senatorov M. M. Structure of the spectrum of the Schrodinger operator with magnetic field in a strip and infinite-gap potentials. Mat. Sb., 1997, 188(5), P. 21–32 (in Russian); English translation: Sb. Math., 1997, 188(5), P. 657–669.

13. Chaplik A.V., Magarill L.I, Romanov D.A. Effect of curvature of a 2D electron sheet on the ballistic conductance and spin-orbit interaction. Physica B, 1998, 249-251, P. 377–382.

14. Ouyang G., Wang C. X., Yang G. W. Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev., 2009, 109(9), P. 4221–4247.

15. Kaur J., Kant R. Curvature-induced anomalous enhancement in the work function of nanostructures. J. Phys. Chem. Lett., 2015, 6(15), P. 2870– 2874.

16. Briet Ph. A model of sheared nanoribbons. Nanosystems: Phys. Chem. Math., 2022, 13(1), P. 12–16.

17. Donnelly C., Hierro-Rodriguez A., Abert C. et al. Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nat. Nanotechnol., 2022, 17, P. 136–142.

18. Schmidt A.G.M. Exact solutions of Schrodinger equation for a charged particle on a sphere and on a cylinder in uniform electric and magnetic ¨ fields. Physica E: Low-dimensional Systems and Nanostructures, 2019, 106, P. 200–207.

19. Gritsev V.V., Kurochkin Yu. A. Model of excitations in quantum dots based on quantum mechanics in spaces of constant curvature. Phys. Rev. B, 2001, 64, P. 035308.

20. Geyler V.A., Ivanov D.A., Popov I.Yu. Approximation of a point perturbation on a Riemannian manifold. Theor. Math. Phys., 2009, 158(1), P. 40–47.

21. Berard P.H., Helffer B., Kiwan R. Courant-sharp property for Dirichlet eigenfunctions on the Mobius strip. ¨ Portugaliae Mathematica, 2021, 78(1), P. 1–41.


Review

For citations:


Popov I.Y. A model of charged particle on the flat Mobius strip in a magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(4):418-420. https://doi.org/10.17586/2220-8054-2023-14-4-418-420

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)