Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Quantum coupling between radio modes in a single-atom maser with two resonators

https://doi.org/10.17586/2220-8054-2025-65-2-176-182

Abstract

In this work, we investigate the effect of quantum coupling between radio fields in a single-atom maser with two spatially separated resonators. Each atom in a beam, depending on its state, can emit one photon into the first resonator and absorb another from the second, thereby entangling the quantum states of two independent modes. Resulting from entanglement, we obtain a coherence between states of two-mode field with the same total number of photons in the both modes. To study the arising coupling, an analytical solution of the stationary master equation is found under conditions of a trapped field state and the dependence of the von Neumann entanglement entropy on the quality factor of the resonators. Numerical analysis reveals that the best conditions for the appearance of quantum coupling are the low quality factor of the first resonator and the high quality factor of the second one.

About the Authors

E. N. Popov
ITMO University
Russian Federation

Eugeniy N. Popov – Laboratory of Quantum Processes and Measurements, Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



A. I. Trifanov
ITMO University
Russian Federation

Alexander I. Trifanov – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



M. A. Moskalenko
ITMO University
Russian Federation

Maria A. Moskalenko – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



V. A. Reshetov
Togliatti State University
Russian Federation

Vladimir A. Reshetov

Belorusskaya str., 14, Togliatti, 445667



References

1. Scully M.O., Zubairy M.S. Quantum Optics. 13-th chapter: Theory of the micromaser, Cambridge: Cambridge University Press, 1997, P. 383–401.

2. Walter H. One-atom maser and other experiments on cavity quantum electrodynamics. Physics–Uspekhi, 1996, 39 (7), P. 727–743.

3. Jaynes E.T., Cummings F.W. Some New Features of Photon Statistics in a Fully Quantized Parametric Amplification Process. Proceedings of the IEEE, 1963, 51 (1), P. 89–109.

4. Filipowicz P., Javanainen J., Meystre P. Theory of a microscopic maser. Phys. Rev. A, 1986, 34, P. 3077–3087.

5. Reshetov V.A., Yevseyev I.V. On the polarization properties of the micromaser pumped by the atoms with degenerate levels. Las. Phys. Lett., 2004, 1, P. 124–133.

6. Raimond J.M., Brune M., Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73, P. 565– 582.

7. Huver S.D., Wildfeuer C.F., Dowling J.P. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A, 2008, 78, 063828/1-5.

8. Walther H., Varcoe B.T.H., Englert B., Becker T. Cavity quantum electrodynamics. Reports on Progress in Physics, 2006, 69, P. 1325–1382.

9. Reshetov V.A., Popov E.N., Yevseyev I.V. One-atom maser pumped by the atoms at mixed states. Las. Phys. Lett., 2010, 7, P. 218–224.

10. Popov E.N., Reshetov V.A. Controllable Source of Single Photons Based on a Micromaser with an Atomic Beam without Inversion. JETP Letters, 2020, 111, P. 727–733.

11. Jin L., Pfender M., Aslam N., Neumann P., Yang S., Wrachtrup J., Liu R.-B. Proposal for a room-temperature diamond maser. Nature Communications, 2015, 6, 8251.

12. Varcoe B.T.H., Brattke S., Weidinger M., Walther H. Preparing pure photon number states of the radiation field. Nature, 2000, 403, P. 743–746.

13. Miroshnichenko G.P. Single photon sources and detectors based on micro- and nanooptical structures. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2 (1), P. 47–63.

14. Weidinger M., Varcoe B.T.H., Heerlein R., Walther H. Trapping States in the Micromaser. Phys. Rev. Lett., 1999, 82, P. 3795–3798.

15. Lugiato L.A., Scully M.O., Walter H. Connection between microscopic and macroscopic maser theory. Phys. Rev. A, 1987, 36, P. 740–743.

16. Meschede D., Walther H., Muller G. One-Atom Maser. ¨ Phys. Rev. Lett., 1985, 54, P. 551–554.

17. Yu D., Kwek L.C., Amico L. Dumke R. Theoretical description of a micromaser in the ultrastrong-coupling regime. Phys. Rev. A, 2017, 95 (5), 53811/1-10.

18. Sokolova A.A., Fedorov G.P., Il’ichev E.V. Astafiev O.V. Single-atom maser with an engineered circuit for population inversion. Phys. Rev. A, 2021, 103 (1), 013718/1-9.

19. Sokolova A.A., Kalacheva D.A., Fedorov G.P. Astafiev O.V. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Phys. Rev. A, 2021, 107 (3), L031701/1-6.

20. Jin L., Pfender M., Aslam N., Neumann P., Yang S., Wrachtrup J., Liu R. Proposal for a room-temperature diamond maser. Nature Communications, 2015, 6 (1), 8251/1-8.

21. Will E., Masters L., Rauschenbeutel A., Scheucher M., Volz J. Coupling a Single Trapped Atom to a Whispering-Gallery-Mode Microresonator. Phys. Rev. Lett., 2021, 126 (23), 233602/1-5.

22. Garziano L., Ridolfo A., Miranowicz A., Falci G., Savasta S., Nori F. Atoms in separated resonators can jointly absorb a single photon. Scientific Reports, 2020, 10 (1), 21660.

23. Rosenblit M., Horak P., Fleminger E., Japha Y., Folman R. Design of microcavity resonators for single-atom detection. J. of Nanophotonics, 2007, 1 (1), 011670.

24. Benoist T., Bruneau L., Pellegrini C. Quantum trajectory of the one atom maser. ArXiv:2403.20094 [math-ph], 2024.

25. Vatutin A.D., Miroshnichenko G.P., Trifanov A.I. Hidden polarization in open quantum systems. Nanosystems: Phys. Chem. Math., 2023, 14 (2), P. 626–632.

26. Muminov Z.I., Aktamova V.U. The point spectrum of the three-particle Schrodinger operator for a system comprising two identical bosons and ¨ one fermion on Z. Nanosystems: Phys. Chem. Math., 2024, 15 (4), P. 438–447.

27. Goncharov F.M., Pervushin B.E., Nasedkin B.A., Goncharov R.K., Yashin D.A., Gellert M.E., Sulimov D.V., Morozova P.A., Filipov I.M., Adam I.A., Chistiakov V.V., Samsonov E.O., Egorov V.I. Increase of signal to reference ratio for phase compensation in continuous-variable quantum key distribution systems. Nanosystems: Phys. Chem. Math., 2023, 14 (1), P. 59–68.

28. Melikhova A.S., Popov A.I., Blinova I.V., Popov I.Y. Mathematical model of weakly coupled spherical resonator chains under the influence of external magnetic field. Nanosystems: Phys. Chem. Math., 2024, 15 (2), P. 155–159.

29. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. 10th Anniversary Edition, Cambridge: Cambridge University Press, 2010, P. 510–519.


Review

For citations:


Popov E.N., Trifanov A.I., Moskalenko M.A., Reshetov V.A. Quantum coupling between radio modes in a single-atom maser with two resonators. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):176-182. https://doi.org/10.17586/2220-8054-2025-65-2-176-182

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)