Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Experimental investigation of rheological properties of niosomal dispersions

https://doi.org/10.17586/2220-8054-2023-14-2-195-201

Abstract

In this work, the rheological properties of niosomal dispersions of various concentrations in the temperature range of 30– 60 C is investigated. The viscosity coefficient and the values of the activation energy were determined experimentally. It is found that the flow of niosomal dispersions exhibits the properties of Newtonian fluids in the studied range of temperatures and shear rates. Conditions were determined for obtaining stable homogeneous niosomal dispersions with an average vesicle size of 80– 150 nm.

About the Authors

E. I. Diskaeva
Department of Physics and Mathematics, Stavropol State Medical University
Russian Federation

Elena Igorevna Diskaeva – Department of Physics and Mathematics

Mira, 310, Stavropol, 355017



O. V. Vecher
Department of Physics and Mathematics, Stavropol State Medical University
Russian Federation

Olga Vladimirovna Vecher – Department of Physics and Mathematics

Mira, 310, Stavropol, 355017



E. N Diskaeva
Branch of the Federal State Budget Educational Institution of Higher Education “MIREA– Russian Techno logical University”
Russian Federation

 Elena Nikolaevna Diskaeva – Branch

355035, Stavropol, Kulakov Avenue, 8



I. A. Bazikov
Department of Microbiology, Stavropol State Medical University
Russian Federation

Igor Alexandrovich Bazikov – Department of Microbiology

Mira, 310, Stavropol, 355017



K. S. Elbekyan
Department of General and Biological Chemistry, Stavropol State Medical University
Russian Federation

Karine Sergeevna Elbekyan – Department of General and Biological Chemistry

Mira, 310, Stavropol, 355017



References

1. Pal’cev M.A. Nanotechnologies in medicine and pharmacology. Remedium, 2008, 9, P. 6–11.

2. Cho H.J., Yoon I.S., Yoon H.Y., et al. Polyethylene glycolconjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials, 2012, 33, P. 1190–1200.

3. Dutta R.C. Drug carriers in pharmaceutical design: promises and progress. Current Pharmaceutical Design, 2007, 13 (7), 761.

4. Martins S., Sarmento B., Ferreira D.C., Souto E.B. Lipid-based colloidal carriers for peptide and protein delivery—liposomes versus lipid nanopar ticles. Int. J. of Nanomedicine, 2007, 2 (4), P. 595–607.

5. Md. Sanower Hossain, Farahidah Mohamed,Mohd Affendi Mohd Shafri. Poly (trimethylene carbonate-co-caprolactone): An emerging drug deliv ery nanosystem in pharmaceutics. Biomaterials and Biomechanics in Bioengineering, 2020, 5 (1), P. 65–86.

6. Naggar V.F., Elgamal S.S., Allam A.N. Proniosomes as a Stable Carrier for Oral Acyclovir: Formulation and Physicochemical Characterization. J. of American Science, 2012, 8 (9), P. 417–428.

7. Dharashive V.M., Yelam K.V.N., Devine S.S. Niosomes: as a targeted drug delivery system. Int. J. of Research in Pharmacy and Chemistry, 2015, 5 (4), P. 582–589.

8. Lombardo D., Kiselev M.A., Caccamo M.T. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. of Nanomaterials, 2019, P. 1–26.

9. Rajera R., Nagpal K., Singh S.K., Mishra D.N. Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin, 2011, 34 (7), P. 945–953.

10. Pardakhty A., Moazeni E. Nano-niosomes in drug, vaccine and gene delivery: a rapid overview. Nanomedicine J., 2013, 1 (1), P. 1–12.

11. Madni A., Sarfraz M., Rehman M., Ahmad M., Akhtar N., Ahmad S., Tahir N., Ijaz S., Al-Kassas R., L¨ obenberg R. Liposomal drug delivery: a versatile platform for challenging clinical applications. J. of Pharmacy and Pharmaceutical Sciences, 2014, 17 (3), P. 401–426.

12. Fofaria N.M., Quattal H.S.S., Liu X., Srivastava S.K. Nanoemulsion formulations for anti-cancer agent piplartine– characterization, toxicological, pharmacokinetics and efficacy studies. Int. J. of Pharmaceutics, 2016, 98(1-2), P. 12–22.

13. Kaur K., Jain S., Sapra B., Tiwary A.K. Niosomal gel for site-specific sustained delivery of anti-arthritic drug: in vitro-in vivo evaluation. Current Drug Delivery, 2007, 4 (4), P. 276–282.

14. Sattuwar P.M., Khandare J.N., Nahde V.S. Niosomal delivery of Ketonozole. Indian Drugs, 2001, 38 (12), P. 620–623.

15. Popova E.V., Beltyukov P.P., Radilov A.S. Modern trends in the development and production of nanoscale systems for the delivery of medicinal compounds. Scientific and technical bulletin of information technologies, mechanics and optics, 2020, 20 (2), P. 206–222.

16. Yoshioka T., Sternberg B., Florence A.T. Preparation and properties of vesicles (niosomes) of sorbitan monoester (Span 20, 40, 60 and 80) and sorbitan trimester (Span 85). Int. J. of Pharmaceutics, 1994, 105 (1), P. 1–6.

17. Ghafelehbashi R., Akbarzadeh I., Tavakkoli Yaraki M., Lajevardi A., Fatemizadeh M., Heidarpoor Saremi L. Preparation, physicochemical prop erties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. of Pharmaceutics, 2019, 569, 118580.

18. Anupriya Kapoor. An overview on niosomes. A novel vesicular approach for ophthalmic drug delivery. Pharma Tutor, 2016, 4 (2), P. 28–33.

19. Vecher O.V., Diskaeva E.I., Bazikov I.A., Elbekyan K.S., Diskaeva E.N. Study of some rheological properties of niosomal dispersions based on PEG-12 dimethicone. Advances in Natural Nanoscience and Nanotechnology, 2020, 11 (4).

20. Diskaeva E.I., Vecher O.V., Bazikov I.A., Elbekyan K.S., Diskaeva E.N. Dependence of the viscosity coefficient of the niosomal dispersion on the temperature and particle size of the dispersed phase. Acta Polynechnica, 2021, 61 (2), P. 336–341.

21. Vasir J.K., Reddy M.K., Labhasetwar V.D. Nanosystems in drug targeting: opportunities and challenges. Current Nanoscience, 2005, 1 (1), P. 47–64.

22. Paolino D., Muzzalupo R., Ricciardi A., Celia C., Picci N., Fresta M. In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomedical Microdevices, 2007, 9 (4), P. 421–433.

23. Godic A. New approaches to psoriasis treatment. A review. Acta Dermatovenerologia 2004, 13 (2), P. 50–57.

24. Kazi Masud Karim, Asim Sattwa Mandal, Nikhil Biswas, Arijit Guha, Sugata Chatterjee, Mamata Behera. Niosome: A future of targeted drug delivery systems. J. of Advanced Pharmaceutical Technology & Research, 2011, 1 (4), P. 374–380.

25. Bibik E.E. Rheology of Dispersed Systems. LGU, Leningrad, 1981, 171 p.

26. Matveenko V.N., Kirsanov E.A. Viscosity and structure of dispersed systems. Moscow University Chemistry Bulletin, 2011, 66, P. 199–201.

27. Malkin A.Y., Isayev A.I. Rheology: concepts, methods, and applications, Elsevier Science, 2017, 500 p.

28. Jhili Mishra, Jitendriya Swain , Ashok Kumar Mishra. Probing the temperature-dependent changes of the interfacial hydration and viscosity of Tween 20: cholesterol (1:1) niosome membrane using fisetin as a fluorescent molecular probe. Physical Chemistry Chemical Physics, 2018, 20, P. 13279–13289.

29. Bazikov I.A., Omelyanchuk P.A. The method of delivery of biologically active substances with the help of niosomes RF patent 2320323, 2008.

30. Diskaeva E.I., Vecher O.V., Bazikov I.A., Vakalov D.S. Particle size analysis of niosomes as a function of temperature. Nanosystems: Phys. Chem. Math. 2018, 9 (2), P. 290–294.

31. Diskaeva E.I., Vecher O.V., Bazikov I.A., Maltsev A.N. Dispersion analysis of niosomes different composition. J. of Nanoparticle Research, 2019, 21 (1), P. 21–23.


Review

For citations:


Diskaeva E.I., Vecher O.V., Diskaeva E.N., Bazikov I.A., Elbekyan K.S. Experimental investigation of rheological properties of niosomal dispersions. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):195-201. https://doi.org/10.17586/2220-8054-2023-14-2-195-201

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)