Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Investigation of stability of composite Nafion/nanocarbon material

https://doi.org/10.17586/2220-8054-2023-14-2-202-207

Abstract

The article presents the results of a study of inorganic-polymer nanocomposites Nafion/thermally expanded graphite and Nafion/carbon black by nuclear magnetic resonance and thermogravimetry. The struc ture of carbon materials was characterized by electron microscopy and adsorption structural analysis by low temperature nitrogen adsorption. The presence of the interaction of Nafion polymer and carbon material at the interface between the components leading to thermal stabilization of the composites is shown, and the differences between thermally expanded graphite and carbon black due to their morphology during interaction with Nafion are discussed.

About the Authors

N. V. Glebova
Ioffe Institute
Russian Federation

Nadezhda V. Glebova

26 Politechnicheskaya str., St. Petersburg, 194021



A. S. Mazur
St. Petersburg State University
Russian Federation

Anton S. Mazur

7-9 Universitetskaya emb., St. Petersburg, 199034



A. O. Krasnova
Ioffe Institute
Russian Federation

Anna O. Krasnova

26 Politechnicheskaya str., St. Petersburg, 194021



I. V. Pleshakov
Ioffe Institute
Russian Federation

Ivan V. Pleshakov

26 Politechnicheskaya str., St. Petersburg, 194021



A. A. Nechitailov
Ioffe Institute
Russian Federation

Andrey A. Nechitailov

26 Politechnicheskaya str., St. Petersburg, 194021



References

1. Tellez-Cruz M.M., Escorihuela J., Solorza-Feria O., Compa˜n V. Proton exchange m membrane fuel cells (PEMFCs): advancesand challenges. Polymers, 2021, 13(18), P. 3064.

2. Zato´ n M., Rozi` ere J., Jones D.J. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review. Sustainable Energy Fuels, 2017, 1, P. 409–438.

3. Bruijn F.A. de, Dam V.A.T., Janssen G.J.M. Durability and degradation issues of PEM fuel cell components. Fuel Cells, 2008, 8(1), P. 3–22.

4. Nechitailov A.A., Glebova N.V. Investigation of the stability of a nanocomposite of platinum carbon black and carbon nanotubes as an electrocat alyst of fuel cells. Electrochemical energy, 2013, 13(4), P. 192–200 (in Russian).

5. Nechitailov A.A., Glebova N.V. Mechanism of the effect of oxygen-modified carbon nanotubes on the kinetics of oxygen electroreduction on platinum. Russian Journal of Electrochemistry, 2014, 50(8), P. 751–755.

6. Grigoriev S.A., Bessarabov D.G. Fateev V.N. Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer elec trolyte cells. Russian Journal of Electrochemistry, 2017, 53, P. 318–323.

7. Siracusano S., Baglio V., Aric` o A.S., Grigoriev S.A., Merlo L., Fateev V.N. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. Journal of Power Sources, 2017, 366, P. 105–114.

8. Pavlov V.I., Gerasimova E.V., Zolotukhina E.V., Don G.M., Dobrovolsky Yu.A., Yaroslavtsev A. B. Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells. Nanotechnologies in Russia, 2016, 11(11-12), P. 743–750.

9. Moguchikh E.A., Alekseenko A.A., Guterman V.E. Novikovsky N.M., Tabachkova N.Yu., Menshchikov V.S. Effect of the composition and structure of Pt(Cu)/C electrocatalysts on their stability under different stress test conditions. Russian Journal of Electrochemistry, 2018, 54, P. 979–989.

10. Nechitailov A.A., Glebova N.V., Tomasov A.A., Krasnova A.O., Zelenina N.K. Study of the heterogeneity of a mixed-conducting electrochemical electrode. Technical Physics, 2019, 64(6), P. 839–847.

11. Ruiz-Perez F., L´ opez-Estrada S.M., Tolentino-Hern´ andez R.V., Caballero-Briones F. Carbon-based radar absorbing materials: a critical review. Journal of Science: Advanced Materials and Devices, 2022, 7(3), P. 100454.

12. Ansari A., Akhtar M.J. High porous carbon black based flexible nanocomposite as efficient absorber for X-band applications. Materials Research Express, 2018, 5(10), P. 105017.

13. Wang Y., Gao X., Wu X., Luo C. Facile synthesis of Mn3O4 hollow polyhedron wrapped by multiwalled carbon nanotubes as a high-efficiency microwave absorber. Ceramics International, 2020, 46(2), P. 1560–1568.

14. Min D., Zhou W., Qing Y., Luo F., Zhu D. Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber. J. Alloys Compd., 2018, 744, P. 629–636.

15. Cheng Y., Seow J.Z.Y., Zhao H., Xu Z.J., Ji G. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett., 2020, 12(1), P. 125.

16. Du X., Wang B., Mu C., Wen F., Xiang J., Nie A., Liu Z. Facile synthesis of carbon-encapsulated Ni nanoparticles embedded into porous graphite sheets as high-performance microwave absorber. ACS Sustainable Chemistry and Engineering, 2018, 6(12), P. 16179–16185.

17. Zhao H., Han X., Li Z., Liu D., Wang Y., Wang Y., Zhou W., Du Y. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J. Colloid Interface Sci., 2018, 528, P. 174–183.

18. Lu W.B., Wang J.W., Zhang J., Liu Z.G., Chen H., Song W.J., Jiang Z.H. Flexible and optically transparent microwave absorber with wide bandwidth based on grapheme. Carbon, 2019, 152, P. 70–76.

19. Mahanta U.J., Gogoi J.P., Borah D., Bhattacharyya N.S. Dielectric characterization and microwave absorption of expanded graphite integrated polyaniline multiphase nanocomposites in X-band. IEEE Trans. Dielectr. Electr. Insul., 2019, 26(1), P. 194–201.

20. Zixuan Lei, Yuxi Song, Mingze Li, Shuaizhen Li, DianyuGeng, Wei Liu, Yu Cui, Haichang Jiang, Song Ma, Zhidong Zhang. Multi-carbon encapsulating soft-magnetic nanocomposite with environmentally adaptive wideband electromagnetic wave absorption, J. Alloys Compd., 2023, 936, P. 168216.

21. Jiheng Ding, Panlin Liu, Min Zhou, Haibin Yu. Nafion-endowed graphene super-anticorrosion performance. ACS Sustainable Chemistry and Engineering, 2020, 8(40), P. 15344–15353.

22. Glebova N.V., Nechitailov A.A., Krasnova A.O. Thermal degradation of Nafion in the presence of nanostructured materials: thermally expanded graphite, carbon black, and platinum. Russ. J. Appl. Chem., 2020, 93(7), P. 1034–1041.

23. Method of producing porous carbon material based on highly disintegrated graphite, Patent 2014116365/05 Russia: IPC C01B 31/04, Mazin V.I., N2581382, Bull. N 11, 2016, 9 p.

24. Kastsova A.G., Glebova N.V., Nechitailov A.A., Krasnova A.O., Pelageikina A.O., Eliseyev I.A. Electronic spectroscopy of graphene obtained by ultrasonic dispersion. Tech. Phys. Lett., 2022, 48(12), P. 60–62.

25. Chen Q., Schmidt-Rohr K. 19F and 13C NMR signal assignment and analysis in a perfluorinated ionomer (Nafion) by two-dimensional solid-state NMR.Macromolecules, 2004, 37(16), P. 5995.

26. Lee W.-J., Bera S., Kim C.M., Koh E.-K., Hong W.-P., Oh S.-J., Cho E., Kwon S.-H. Synthesis of highly dispersed Pt nanoparticles into carbon supports by fluidized bed reactor atomic layer deposition to boost PEMFC performance. NPG Asia Materials, 2020, 12(1), P. 40.


Review

For citations:


Glebova N.V., Mazur A.S., Krasnova A.O., Pleshakov I.V., Nechitailov A.A. Investigation of stability of composite Nafion/nanocarbon material. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):202-207. https://doi.org/10.17586/2220-8054-2023-14-2-202-207

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)