Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Proton beam-induced radiosensitizing effect of Ce0.8Gd0.2O2−x nanoparticles against melanoma cells in vitro

https://doi.org/10.17586/2220-8054-2024-15-5-675-682

Abstract

T Proton beam therapy is being used increasingly to treat melanoma. Meanwhile, proton beam therapy has a number of disadvantages that can be reduced or completely eliminated through the use of modern innovative approaches, including the use of nanoradiosensitizers. Here we showed the possibility of using redox-active dextran-stabilized Ce0,8Gd0,2O2−x nanoparticles (Ce0,8Gd0,2O2−x NPs) as a radiosensitizer to promote mouse melanoma cell death under proton beam irradiation in vitro. It has been shown that these Ce0,8Gd0,2O2−x NPs do not reduce the viability and survival rate of both NCTC L929 normal mouse fibroblasts and B16/F10 mouse melanoma cells in a wide range of concentrations. However, Ce0,8Gd0,2O2−x NPs significantly reduce the mitochondrial membrane potential of these cells. Additionally, it has been shown that Ce0,8Gd0,2O2−x NPs are able to effectively reduce the clonogenic activity of B16/F10 melanoma cells under proton beam irradiation. Meanwhile, proton beam irradiation remarkably reduced the clonogenic activity and MMP of melanoma cells. Hence, Ce0,8Gd0,2O2−x NPs act as a radiosensitizer in B16/F10 mouse melanoma cells under proton beam irradiation. We assume that such radiosensitizing effect of Ce0,8Gd0,2O2−x NPs is due to a decrease of the membrane mitochondrial potential. Thus, the use of Ce0,8Gd0,2O2−x NPs in combination with proton beam irradiation is a promising approach for the effective treatment of melanoma.

About the Authors

Danil D. Kolmanovich
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Danil D. Kolmanovich

Pushchino



Mikhail V. Romanov
Institute of Molecular Theranostics, Sechenov First Moscow State Medical University; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Russian Federation

Mikhail V. Romanov

Moscow



Sergey A. Khaustov
Scientific and Educational Center, State University of Education
Russian Federation

Sergey A. Khaustov

Moscow



Vladimir K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Vladimir K. Ivanov

Moscow



Alexander E. Shemyakov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Lebedev Physical Institute of the Russian Academy of Sciences
Russian Federation

Alexander E. Shemyakov

Pushchino; Moscow



Nikita N. Chukavin
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences;Scientific and Educational Center, State University of Education
Russian Federation

Nikita N. Chukavin

Pushchino; Moscow



Anton L. Popov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Scientific and Educational Center, State University of Education
Russian Federation

Anton L. Popov

Pushchino; Moscow



References

1. Ringborg U., Bergqvist D., Brorsson B., Cavallin-stahl E., Ceberg J., Einhorn N., Fr ˙ odin J., J ¨ arhult J., Lamnevik G., Lindholm C., Littbrand B., ¨ Norlund A., Nylen U., Ros ´ en M., Svensson H., M ´ oller T. The Swedish Council on Technology Assessment in Health Care (SBU) Systematic ¨ Overview of Radiotherapy for Cancer Including a Prospective Survey of Radiotherapy Practice in Sweden 2001–Summary and Conclusions. Acta Oncol. 2003.

2. Baskar R., Lee K.A., Yeo R., Yeoh K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci., 2012, 9, P. 193–199.

3. Yalamarty S.S.K., Filipczak N., Li X., Subhan M.A., Parveen F., Ataide J.A., Rajmalani B.A., Torchilin V.P. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers, 2023, 15, P. 2116.

4. Gregucci F., Beal K., Knisely J.P.S., Pagnini P., Fiorentino A., Bonzano E., Vanpouille-Box C.I., Cisse B., Pannullo S.C., Stieg P.E., et al. Biological Insights and Radiation–Immuno–Oncology Developments in Primary and Secondary Brain Tumors. Cancers, 2024, 16, P. 2047.

5. Mohan R. A Review of Proton Therapy – Current Status and Future Directions. Precis. Radiat. Oncol., 2022, 6, P. 164–176.

6. Chen, Z.; Dominello, M.M.; Joiner, M.C.; Burmeister, J.W. Proton versus Photon Radiation Therapy: A Clinical Review. Front. Oncol. 2023, 13.

7. Wang, H.; Mu, X.; He, H.; Zhang, X.-D. Cancer Radiosensitizers. Trends Pharmacol. Sci. 2018, 39, P. 24–48.

8. Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S.; Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2021, 16, P. 1083–1102. Erratum in: Int J Nanomedicine., 2021, 16, P. 8139–8140.

9. Varzandeh M., Sabouri L., Mansouri V., Gharibshahian M., Beheshtizadeh N., Hamblin M.R., Rezaei N. Application of Nano-Radiosensitizers in Combination Cancer Therapy. Bioeng. Transl. Med. 2023, 8, P. e10498.

10. Laurent S., Mahmoudi M. Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Cancer. Int. J. Mol. Epidemiol. Genet., 2011, 2, P. 367–390.

11. Zavestovskaya I.N., Filimonova M.V., Popov A.L., Zelepukin I.V., Shemyakov A.E., Tikhonowski G.V., Savinov M., Filimonov A.S., Shitova A.A., Soldatova O.V., et al. Bismuth Nanoparticles-Enhanced Proton Therapy: Concept and Biological Assessment. Mater. Today Nano, 2024, 27, P. 100508.

12. Newhauser W.D., Zhang R. The Physics of Proton Therapy. Phys. Med. Biol., 2015, 60, P. R155.

13. Gerken L.R.H., Gogos A., Starsich F.H.L., David H., Gerdes M.E., Schiefer H., Psoroulas S., Meer D., Plasswilm L., Weber D.C., et al. Catalytic Activity Imperative for Nanoparticle Dose Enhancement in Photon and Proton Therapy. Nat. Commun., 2022, 13, P. 3248.

14. Wei H., Wang E. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes. Chem. Soc. Rev., 2013, 42, P. 6060–6093.

15. Wu J., Wang X., Wang Q., Lou Z., Li S., Zhu Y., Qin L., Wei H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev., 2019, 48, P. 1004–1076.

16. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Ivanov V.K. Cerium Dioxide Nanoparticles as Third-Generation Enzymes (Nanozymes). Nanosyst. Phys. Chem. Math., 2017, P. 760–781.

17. Lin W., Huang Y., Zhou X.-D., Ma Y. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. Int. J. Toxicol., 2006, 25, P. 451–457.

18. De Marzi L., Monaco A., De Lapuente J., Ramos D., Borras M., Di Gioacchino M., Santucci S., Poma A. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. Int. J. Mol. Sci., 2013, 14, P. 3065–3077.

19. Wason M.S., Colon J., Das S., Seal S., Turkson J., Zhao J., Baker C.H. Sensitization of Pancreatic Cancer Cells to Radiation by Cerium Oxide Nanoparticle-Induced ROS Production. Nanomedicine Nanotechnol. Biol. Med., 2013, 9, P. 558–569.

20. Kolmanovich D.D., Chukavin N.N., Savintseva I.V., Mysina E.A., Popova N.R., Baranchikov A.E., Sozarukova M.M., Ivanov V.K., Popov A.L. Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications. Polymers, 2023, 15, P. 3840


Review

For citations:


Kolmanovich D.D., Romanov M.V., Khaustov S.A., Ivanov V.K., Shemyakov A.E., Chukavin N.N., Popov A.L. Proton beam-induced radiosensitizing effect of Ce0.8Gd0.2O2−x nanoparticles against melanoma cells in vitro. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):675-682. https://doi.org/10.17586/2220-8054-2024-15-5-675-682

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)