Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Comparative study of transport properties of membranes based on graphene oxide prepared by Brodie and improved Hummers’ methods

https://doi.org/10.17586/2220-8054-2023-14-2-272-278

Abstract

A comparative study of transport characteristics of composite membranes based on graphene oxide prepared by Hummers’ (H-GO) and Brodie (B-GO) methods is presented. By using Raman and XPS spectroscopy combined with gas and vapor measurements at non-zero pressure drop, it is shown that the dif ference in preparation methods results not only in different composition and microstructure of the membranes, but also in different water vapor permeability and resistance towards pressure drops during membrane perfor mance. TheH-GOsamplesarefoundtobemoredefective and stronger oxidized with C/O ratio of 1.8, whereas B-GO revealed a total C/O ratio of 2.6 with more perfect microstructure. The higher oxidation degree of H-GO membranes allows one to achieve higher water vapor permeability (up to 170 Barrer at 100 % humidity) but dramatically lower stability towards pressure revealing the irreversible loss in permeability up to 46 % dur ing the application of pressure drop of 1 bar. In contrast, B-GO membranes show slightly lower permeability ( 140Barrer at 100 % humidity) but enhanced pressure stability revealing the irreversible permeability loss of only 4 % at pressure drop of 1 bar which is about 10-fold smaller compared to H-GO stability. This could be explained by the difference in microstructural features of the H-GO and B-GO. Graphene oxide prepared by Hummer’s method has more flexible and defective nanosheets, whereas Brodie’s method gives rise to more rigid nanosheets with more perfect microstructure. The obtained results suggest that it is possible to prepare graphene oxide membranes with high resistance towards pressure using only the composition-microstructure interplay without additional modification with pressure-stabilizing agents.

About the Authors

E. A. Chernova
Lomonosov Moscow State University; Tula State University
Russian Federation

 Ekaterina A. Chernova - Faculty of Materials Science

119991, Moscow, GSP-1,1-73 Leninskiye Gory

300012, Tula, Lenina avenue 92



K. E. Gurianov
Lomonosov Moscow State University
Russian Federation

Konstantin E. Gurianov - Faculty of Materials Science

119991, Moscow, GSP-1, 1-73 Leninskiye Gory



V. A. Brotsman
Lomonosov Moscow State University
Russian Federation

Victor A. Brotsman – Faculty of Chemistry

119991, Moscow, GSP-1, 1-3 Leninskiye Gory,



R. G. Valeev
Udmurt Federal Research Center of the Ural Brunch of Russian Academy of Sciences (UdmFRC of UB RAS)
Russian Federation

Rishat G. Valeev

Izhevsk, st. them. Tatiana Baramzina 34, 426067



O. O. Kapitanova
Lomonosov Moscow State University
Russian Federation

Olesya O. Kapitanova – Faculty of Chemistry

119991, Moscow, GSP-1, 1-3 Leninskiye Gory



M. V. Berekchiian
Lomonosov Moscow State University
Russian Federation

Mikhail V. Berekchiian – Faculty of Materials Science

119991, Moscow, GSP-1, 1-73 Leninskiye Gory



A. V. Lukashin
Lomonosov Moscow State University
Russian Federation

Alexei V. Lukashin – Faculty of Materials Science

119991, Moscow, GSP-1, 1-73 Leninskiye Gory



References

1. Kim J.H. Grand Challenges in Membrane Applications—Gas and Vapor. Frontiers in Membrane Science and Technology, 2022, 1.

2. AlenS.K., NamS., DastgheibS.A.RecentAdvancesinGrapheneOxideMembranesforGasSeparationApplications.Int. J. of Molecular Sciences, 2019, 20 (22), 5609.

3. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4 (8), P. 4806–4814.

4. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39 (1), P. 228–240.

5. Wei N., Peng X. Xu Z. Understanding Water Permeation in Graphene Oxide Membranes. ACS Applied Materials & Interfaces, 2014, 6 (8), P. 5877–5883.

6. Liu L., Zhou Y., Xue J., Wang H. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification. AIChE J., 2019, 65, (10), e16699.

7. Han Y., Jiang Y., Gao C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. ACS Applied Materials & Interfaces, 2015, 7 (15), P. 8147–8155.

8. Tang X., Qu Y., Deng S.-L., Tan Y.-Z., Zhang Q., Liu Q. Fullerene-regulated graphene oxide nanosheet membranes with well-defined laminar nanochannels for precise molecule sieving. J. Mater. Chem. A, 2018, 6 (45), P. 22590–22598.

9. Li W., Zhang Y., Su P., Xu Z., Zhang G., Shen C., Meng Q. Metal–organic framework channelled graphene composite membranes for H2/CO2 separation. J. Mater. Chem. A, 2016, 4 (48), P. 18747–18752.

10. Huang H., Song Z., Wei N., Shi L., Mao Y., Ying Y., Sun L., Xu Z., Peng X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 2013, 4, 2979.

11. Yang R., Fan Y., Yu R., Dai F., Lan J., Wang Z., Chen J., Chen L. Robust reduced graphene oxide membranes with high water permeance enhanced by K+modification. J. of Membrane Science, 2021, 635, 119437.

12. Brodie B.C. XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 1859, 149, P. 249–259.

13. Staudenmaier L. Verfahren zur Darstellung der Graphits¨ aure. Berichte der deutschen chemischen Gesellschaft, 1898, 31 (2), P. 1481–1487.

14. Hofmann U., K¨onig E. Untersuchungen ¨ uber Graphitoxyd. Zeitschrift f¨ur anorganische und allgemeine Chemie, 1937, 234 (4), P. 311–336.

15. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. of the American Chemical Society, 1958, 80 (6), 1339.

16. Yoo M.J., Park H.B. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon, 2019, 141, P. 515–522.

17. Talyzin A., Mercier G., Klechikov A., Hedenstr¨om M., Johnels D., Wei D., Cotton D., Opitz A., Moons E. Brodie vs Hummers graphite oxides for preparation of multi-layered materials. Carbon, 2017, 115, P. 430–440.

18. Ibrahim A.F.M., Banihashemi F., Lin Y.S. Graphene oxide membranes with narrow inter-sheet galleries for enhanced hydrogen separation. Chem ical Communications, 2019, 55 (21), P. 3077–3080.

19. Pedrosa M., Da Silva E.S., Pastrana-Mart´ ınez L.M., Drazic G., Falaras P., Faria J.L., Figueiredo J.L., Silva A.M.T. Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation. J. of Colloid and Interface Science, 2020, 567, P. 243–255.

20. Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters, 2012, 12 (8), P. 3925–3930.

21. King A.A.K., Davies B.R., Noorbehesht N., Newman P., Church T.L., Harris A.T., Razal J.M., Minett A.I. A New Raman Metric for the Charac terisation of Graphene oxide and its Derivatives. Scientific Reports, 2016, 6, 19491.

22. Chernova E.A., Petukhov D.I., Chumakov A.P., Kirianova A.V., Sadilov I.S., Kapitanova O.O., Boytsova O.V., Valeev R.G., Roth S.V., Eliseev Ar., Eliseev An. The role of oxidation level in mass-transport properties and dehumidification performance of graphene oxide membranes. Carbon, 2021, 183, P. 404–414.

23. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010, 22 (35), P. 3906–3924.

24. Reinecke S.A., Sleep B.E. Knudsen diffusion, gas permeability, and water content in an unconsolidated porous medium. Water Resources Research, 2002, 38 (12), P. 15–16.

25. Do D.D. Adsorption Analysis: Equilibria and Kinetics. In: Series on Chemical Engineering. Imperial College Press 1998, P. 892.

26. Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V., Geim A.K. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science, 2012, 335 (6067), P. 442–444.

27. Chong J.Y., Wang B., Li K. Water transport through graphene oxide membranes: the roles of driving forces. Chemical Communications, 2018, 54 (20), P. 2554–2557.

28. Zhang Z., Xiao X., Zhou Y., Huang L., Wang Y., Rong Q., Han Z., Qu H., Zhu Z., Xu S., Tang J., Chen J. Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS Nano, 2021, 15 (8), P. 13178–13187.

29. Li Y., Zhao W., Weyland M., Yuan S., Xia Y., Liu H., Jian M., Yang J., Easton C.D., Selomulya C., Zhang X. Thermally Reduced Nanoporous Graphene Oxide Membrane for Desalination. Environmental Science & Technology, 2019, 53 (14), P. 8314–8323.

30. Wang Z., Ma C., Xu C., Sinquefield S.A., Shofner M.L., Nair S. Graphene oxide nanofiltration membranes for desalination under realistic condi tions. Nature Sustainability, 2021, 4 (5), P. 402–408.


Review

For citations:


Chernova E.A., Gurianov K.E., Brotsman V.A., Valeev R.G., Kapitanova O.O., Berekchiian M.V., Lukashin A.V. Comparative study of transport properties of membranes based on graphene oxide prepared by Brodie and improved Hummers’ methods. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):272-278. https://doi.org/10.17586/2220-8054-2023-14-2-272-278

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)