Synthesis of gadolinium titanate based nanocrystalline multicomponent rare earth oxides
https://doi.org/10.17586/2220-8054-2024-15-6-774-780
Abstract
Optimal conditions for the synthesis of single-phase crystalline and nanocrystalline multicomponent oxides based on pyrochlore structure gadolinium titanate have been determined. The parameters of cubic lattices were determined and the morphology of the surface of RE titanates was studied.
About the Authors
A. V. GuskovRussian Federation
Anton V. Guskov
119991, Leninsky pr. 31, Moscow
P. G. Gagarin
Russian Federation
Pavel G. Gagarin
119991, Leninsky pr. 31, Moscow
V. N. Guskov
Russian Federation
Vladimir N. Guskov
119991, Leninsky pr. 31, Moscow
K. S. Gavrichev
Russian Federation
Konstsntin S. Gavrichev
119991, Leninsky pr. 31, Moscow
References
1. Andrievskaya E.R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Europ. Ceram. Soc., 2008, 28, P. 2363–2388.
2. Komissarova L.N., Shatsky V.M., Pushkina G.Ya, Scherbakova L.G., Mamsurova L.G., Sukhanova G.E. Rare-earth compounds. Carbonates, oxalates, nitrates, titanates. Nauka Publ. Co. 1984. 235 p.
3. Subramanian M.A., Aravamudan G., Subba Rao G.V. Oxide pyrochlores—A review. Prog. Solid State Chem., 1983, 15, P. 55–143 .
4. Clarke D. R., Phillpot S. R. Thermal barrier coating materials. Materials Today, 2005, 8, P. 22–29.
5. Vaßen R., Jarligo M.O., Steinke T., Mack D.E., St¨over D. Overview on advanced thermal barrier coatings. Surf. Coat. Tech., 2010, 205, P. 938–942.
6. Yamamura H. Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics, 2003, 158, P. 359–365.
7. Brixner L.H. Structural and luminescent properties of the Ln2Hf2O7-type rare earth hafnates. Mater. Res. Bull., 1984, 19, P. 143–149.
8. Ji Y., Jiang D., Shi J. La2Hf2O7:Ti4+ ceramic scintillator for X-ray imaging. J. Mater. Res., 2005, 20, P. 567–570.
9. Ewing R.C., Weber W.J., Lian J. Nuclear waste disposa lpyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys., 2004, 95, P. 5949–5971.
10. McMaster S.A., Ram R., Faris N., Powenceby M.I. Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix. A review. J. Hazard Mater., 2018, 360, P. 257–269.
11. Wang Y., Jing C., Ding Z.Y., Zhang Y.Z., Wei T., Quang J.H., Liu Z.G., Wang Y.-J., Wang Y.-M. The structure, property, and ion irradiation effects of pyrochlores: a comprehensive review. Crystals, 2003, 13.
12. Weber W.J., Ewing R.C., Plutonium immobilizationand radiation effects. Science, 2000, 289 (5787), P. 2051–2052.
13. Lu X., Shu X., Wang L., Shao D., Zhang H., Zhang K., Xie Y. Heavy-ion irradiation effects on Gd2Zr2O7 ceramics bearing complex nuclear waste. J. Alloys Compd., 2019, 771, P. 973–979.
14. Lian J., Chen J., Wang L.M., Ewing R.C. Radiation-induced amorphization of rare-earh titanate pyrochlores. Phys. Rev. B, 2003, 68, 134107.
15. Sickafu K.E., Minervini I. Grimes R.W., Valdez J.A., Ishimaru M., Li F., McClellan K.J. Radiation tolerance of complex oxides. Science, 2000, 289 (5480), P. 748–751.
16. Wang S.X., Wang L.M., Ewing R.C., Govindan Kutti K.V. Ion irradiation effects for two pyrochlore compositions: Gd2Ti2O7 and Gd2Zr2O7. Mat. Res. Soc. Symp. Proc., 1998, 540, P. 355–360.
17. Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. Thermodynamic function of complex zirconia based lanthanide oxides-pyrochlores Ln2Zr2O7 (Ln=La, Pr, Sm, Eu, Gd) and fluorites Ln2O3 · 2ZrO2 (Ln=Tb, Ho, Er, Tm). Russ. J. Inorg. Chem., 2019, 64, P. 1265–1281.
18. Yang D.Y., Xu C.P., Fu C.G., Zhang K.Q., Wang Y.Q., Li Y.H. Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2−xErx)O7−x/2 (x = 0 – 0.667). Nucl. Instr. Meth. Phys. Res B, 2015, 356–357, P. 69–74.
19. Helean K.B., Ushakov S.V., Brown C.E., Navrotsky A., Lian J., Ewing R.C., Farmer J.M., Boatner L.A. Formation enthalpies of rare earth titanate pyrochlores. J. Sol. State Chem., 2004, 177, P. 1858–1866.
20. Ward T.Z., Wilkerson R.P., Muziko B.L., Foley A., Brahleg M., Weber W.J., Sickafus K.E., Mazza A.R. High entropy ceramics for applications in extreme environments. J. Phys.: Mater., 2024, 7, 021001.
21. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H. Nanostructured high-entropy alloys with multiple principale: novel alloy design concepts and outcomes. Advance Eng. Mater., 2004, 6, P. 299–303.
22. Guo H., Zhang K., Li Y. Heavy-ion irradiation effects of high-entropy A2Ti2O7 pyrochlore with multi-elements at site. Ceram. Int., 2024, 50, P. 21859–21868.
23. Gagarin P.G., Tyurin A.V., Guskov V.N., Khoroshilov A.V., Nikiforova G.E., Gavrichev K.S. Thermodynamic properties of p-Sm2Zr2O7. Inorgan. Mater., 2017, 53, P. 619–625.
24. Guskov A.V. Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Thermal properties of solid solutions Ln2O3 · 2HfO2 (Ln = Dy, Ho, Er, Tm, Yb, Lu) at 300 – 1300 K. Ceram. Int., 2021, 47, P. 28004–28007.
25. Prohaska T., Irrgeher J., Benefield J., B¨ohlke J.K., Chesson L.A., Coplen T.B., Ding T., Dunn P. J.H., Gr¨oning M., Holden N.E., Meijer H. A. J., Moossen H., Possolo A., Takahashi Y., Vogl J., Walczyk T., Wang J., Wieser M.E., Yoneda S., Zhu X.-K, Meija J. Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry, 2022, 94, P. 573–600.
26. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 1976, 32, P. 751–767.
27. ICDD PDF Database, https://www.icdd.com/
28. Waring J.L., Schneider S.J. Phase equilibrium relationships in the system Gd2O3–TiO2. J. Res. Nat. Bur. Stand. A, 1965, 69, P. 255–261.
Review
For citations:
Guskov A.V., Gagarin P.G., Guskov V.N., Gavrichev K.S. Synthesis of gadolinium titanate based nanocrystalline multicomponent rare earth oxides. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):774-780. https://doi.org/10.17586/2220-8054-2024-15-6-774-780