Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Ionic channel structure in perfluorinated membranes studied by small angle X-ray scattering, optical and Mossbauer spectroscopy

https://doi.org/10.17586/2220-8054-2024-15-5-716-725

Abstract

Small angle X-ray scattering optical and Mossbauer spectroscopy has been used to study ionic ¨ channels in perfluorinated Nafion® -type membranes. X-ray scattering data have revealed the ordering of ionic groups of polymer chains at nanoscales into extended fine channels for proton conductivity. Then the membranes were saturated with Fe3+ ions to probe their interaction with sulfonic groups. This remarkably changed electron properties of copolymer in which the energy of optical gap has decreased. The Mossbauer spectra ¨ have confirmed that even at ambient temperature in membrane, Fe3+ ions are assembled into antiferromagnetic dimers with water shells and associated with sulfonic groups at the channel surfaces. The applied complementary methods allowed us to examine a short-range order of ionic groups forming a network of channels in membranes that provide their functional properties in hydrogen fuel cells.

About the Authors

Vasily T. Lebedev
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center “Kurchatov Institute”
Russian Federation

Vasily T. Lebedev

188300, Gatchina



Valery S. Kozlov
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center “Kurchatov Institute”
Russian Federation

Valery S. Kozlov

188300, Gatchina



Mikhail V. Remizov
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center “Kurchatov Institute”
Russian Federation

Mikhail V. Remizov

188300, Gatchina



Yury V. Kulvelis
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center “Kurchatov Institute”
Russian Federation

Yury V. Kulvelis

188300, Gatchina



Oleg N. Primachenko
Institute of Macromolecular Compounds, Russian Academy of Sciences
Russian Federation

Oleg N. Primachenko

199004, St. Petersburg



Elena A. Marinenko
Institute of Macromolecular Compounds, Russian Academy of Sciences
Russian Federation

Elena A. Marinenko

199004, St. Petersburg



Georgy S. Peters
National Research Center “Kurchatov Institute”
Russian Federation

Georgy S. Peters

123182, Moscow



References

1. Ahmad S., Nawaz T., Ali A., Orhan M.F., Samreen A., Kannan A.M. An overview of proton-exchange membranes for fuel cells: Materials and manufacturing. Int. J. of Hydrogen Energy, 2022, 47 (44), P. 19086–19131.

2. Pan M., Pan C., Li C., Zhao J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renewable and Sustainable Energy Reviews, 2021, 141 (25), 110771.

3. Yaroslavtsev A.B., Stenina I.A. Current progress in membranes for fuel cells and reverse electrodialysis. Mendeleev Commun., 2021, 31, P. 423– 432.

4. Yaroslavtsev A.B., Stenina I.A., Golubenko D.V. Membrane materials for energy production and storage. Pure Appl. Chem., 2020, 92 (7), P. 1147– 1157.

5. Li T., Shen J., Chen G., Guo S., Xie G. Performance Comparison of Proton Exchange Membrane Fuel Cells with Nafion and Aquivion Perfluorosulfonic Acids with Different Equivalent Weights as the Electrode Binders. ACS Omega, 2020, 5 (28), P. 17628–17636.

6. Mugtasimova K.R., Melnikov A.P., Galitskaya E.A., Kashin A.M., Dobrovolskiy A., Don G.M., Likhomanov V.S., Sivak A.V., Sinitsyn V.V. Fabrication of Aquivion-type membranes and optimization of their elastic and transport characteristics. Ionics, 2018, 24, P. 3897–3903.

7. Dombaycıoglu S¸, G ˘ unsel H., Aydın A.O. Nafion/Aquivion-Based Composite Lithium Ion Exchange Membranes for High Capacity Li–S Batteries. ¨ Chemistry Select, 2022, 7 (39), e202202910.

8. Hsu W.Y., Gierke T.D. Ion transport and clustering in Nafion perfluorinated membranes. J. of Membrane Science, 1983, 13 (3), P. 307–326.

9. Gebel G., Diat O. Neutron and X-ray scattering: Suitable tools for studying ionomer membranes. Fuel Cells, 2005, 5, P. 261–276.

10. Schmidt-Rohr K., Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater., 2008, 7, P. 75–83.

11. Fernandez Bord´ın S.P., Andrada H.E., Carreras A.C., Castellano G.E., Oliveira R.G., Galvan Josa V.M. Nafion membrane channel structure studied ´ by small-angle X-ray scattering and Monte Carlo simulations. Polymer, 2018, 155, P. 58–63.

12. Bazaid M., Huang Y., Goddard W.A., Jang S.S. Proton transport through interfaces in nanophase-separation of hydrated aquivion membrane: Molecular dynamics simulation approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676, Part A, 132187.

13. Petrov A.V., Murin I.V. Electronic Structure of SO3H Functional Groups and Proton Mobility in Nafion and Aquivion Ionomer Membranes. Russian J. of General Chemistry, 2019, 89 (3), P. 553–555.

14. Agarwal T., Prasad A.K., Advani S.G., Babu S.K., Borup R.L. Infrared spectroscopy for understanding the structure of Nafion and its associated properties. J. Mater. Chem. A, 2024, 12, P. 14229–14244.

15. Mbarek S., El Kissi N., Baccouch Z., Iojoiu C. Extrusion of Nafion and Aquivion membranes: environmentally friendly procedure and good conductivities. Polymer Bulletin, 2019, 76, P. 1151–1166.

16. Haubold H.-G., Vad T., Jungbluth H., Hiller P. Nano structure of NAFION: a SAXS study. Electrochimica Acta, 2001, 46 (10), P. 1559–1563.

17. Barbi V., Funari S.S., Gehrke R., Scharnagl N., Stribeck N. Nanostructure of Nafion membrane material as a function of mechanical load studied by SAXS. Polymer, 2003, 44, P. 4853–4861.

18. Elliott J.A., Wu D.S., Paddison S.J., Moore R.B. A unified morphological description of Nafion membranes from SAXS and mesoscale simulations. Soft Matter, 2011, 7 (15), P. 6820–6827.

19. Xue T., Trent J.S., Osseo-Asare K. Characterization of Nafion® membranes by transmission electron microscopy. J. of Membrane Science, 1989, 45 (3), P. 261–271.

20. Yakovlev S., Balsara N.P., Downing K.H. Insights on the Study of Nafion Nanoscale Morphology by Transmission Electron Microscopy. Membranes, 2013, 3, P. 424–439.

21. Yakovlev S., Downing K., Balsara N. Electron Microscopy of Nafion Membrane. Microscopy and Microanalysis, 2013, 19 (S2), P. 1652–1653.

22. Aleksandrova E., Hink S., Hiesgen R., Roduner E. Spatial distribution and dynamics of proton conductivity in fuel cell membranes: Potential and limitations of electrochemical atomic force microscopy measurements. J. of Physics: Condensed Matter, 2011, 23 (23), 234109.

23. Hiesgen R., Aleksandrova E., Meichsner G., Andreas Friedrich K. High-resolution imaging of ion conductivity of Nafion (R) membranes with electrochemical atomic force microscopy. Electrochimica Acta, 2009, 55, P. 423–429.

24. Tsimbal T.Yu., Chibirova F.Kh., Kostyuchenko I.G. Magnetic relaxation and submicrostructure of iron hydroxide precipitates in ionomer membrane. J. of Magnetism and Magnetic Materials, 1994, 136, P. 197–203.

25. Maksimichev A.V., Kostyuchenko I.G., Chibirova F.Kh., Zhilinskaya E.A., Chakulaeva L.N., Timashev S.F. Binding of Fe3+ ions to halobacterial purple membranes as studied by Mossbauer spectroscopy. ¨ Membrane & Cell Biology, 1997, 10 (5), P. 487–501.

26. Chibirova F.Kh., Kostyuchenko I.G., Kirsh Yu.E. Specific features of the structure of polymer ion-exchange membranes prepared from sulfocationic aromatic polyamides as studied by Mossbauer spectroscopy. ¨ Russian J. of Physical Chemistry, 1999, 73 (1), P. 111–116.

27. Cui Z., Drioli E., Lee, Y.M. Recent progress in fluoropolymers for membranes. Progress in Polymer Science, 2014, 39 (1), P. 164–198.

28. Ivanchev S.S., Myakin S.V. Polymer membranes for fuel cells: manufacture, structure, modification, properties. Russ. Chem. Rev., 2010, 79 (2), P. 101–117.

29. Primachenko O.N., Marinenko E.A., Odinokov A.S., Kononova S.V., Kulvelis Yu.V., Lebedev V.T. State of the art and prospects in the development of proton?conducting perfluorinated membranes with short side chains: A review. Polymers for Advanced Technologies, 2021, 32 (4), P. 1386– 1408.

30. Pan H.K., Yarusso D.J., Knapp G.S., Pineri M., Meagher A., Coey J.M.D., Cooper S.L. EXAFS and Mossbauer studies of iron neutralized Nafion ¨ ionomers. J. Chem. Phys., 1983, 79 (10), P. 4736–4745.

31. Chen N., Lee Y.M. Anion exchange polyelectrolytes for membranes and ionomers. Progress in Polymer Science, 2021, 113, 101345.

32. Eisenberg A., Hird B., Moore R.B. A new multiplet-cluster model for the morphology of random ionomers. Macromolecules, 1990, 23 (18), P. 4098–4107.

33. Page K.A., Cable K.M., Moore R.B. Molecular Origins of the Thermal Transitions and Dynamic Mechanical Relaxations In Perfluorosulfonate Ionomers. Macromolecules, 2005, 38 (15), P. 6472–6484.

34. Wakabayashi K., Register R.A. Morphological origin of the multistep relaxation behavior in semicrystalline ethylene/methacrylic acid ionomers. Macromolecules, 2006, 39 (3), P. 1079–1086.

35. Weiss R.A., Yu W.C. Viscoelastic Behavior of Very Lightly Sulfonated Polystyrene Ionomers. Macromolecules, 2007, 40 (10), P. 3640–3643.

36. Mohamed H.F.M., Kobayashi Y., Kuroda C.S., Ohira A. Effects of Ion Exchange on the Free Volume and Oxygen Permeation in Nafion for Fuel Cells. J. Phys. Chem. B, 2009, 113 (8), P. 2247–2252.

37. Mohamed H.F M., Kobayashi Y., Kuroda C.S., Ohira A. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane. J. Phys. Conf. Ser., 2010, 225, 012038.

38. Ruan D., Simmons D.S. Roles of Chain Stiffness and Segmental Rattling in Ionomer Glass Formation. J. Polym. Sci., Part B: Polym. Phys., 2015, 53, P. 1458–1469.

39. Park H.B., Nam S.Y., Rhim J.W., Lee J.M., Kim S.E., Kim J.R., Lee Y.M. Gas-transport properties through cation-exchanged sulfonatedpolysulfone membranes. J. Appl. Polym. Sci., 2002, 86 (10), P. 2611–2617.

40. Mukaddam M., Wang Y., Pinnau I. Structural, Thermal, and Gas-Transport Properties of Fe3+ Ion-Exchanged Nafion Membranes. ACS Omega, 2018, 3 (7), P. 7474–7482.

41. Heitner-Wirguin C. Infra-red spectra of perfluorinated cation-exchanged membranes. Polymer, 1979, 20 (3), P. 371–374.

42. Chen M., Ma J., Wang Z., Zhang X., Wu Z. Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring. RSC Adv., 2017, 7, P. 36555–36561.

43. Odinokov A.S., Bazanova O.S., Sokolov L.F., Barabanov V.G., Timofeev S.V.Kinetics of copolymerization of tetrafluoroethylene with perfluoro(3,6-dioxa-4-methyl-7-octen)sulfonyl fluoride. Russian J. of Applied Chemistry, 2009, 82 (1), P. 112–115.

44. Ivanchev S.S., Myakin S.V. Polymer membranes for fuel cells: manufacture, structure, modification, properties. Russian Chemical Reviews, 2010, 79 (2), P. 101–117.

45. Primachenko O.N., Odinokov A.S., Barabanov V.G., Tyulmankov V.P., Marinenko E.A., Gofman I.V., Ivanchev S.S. Relationship between the Morphology, Nanostructure, and Strength Properties of Aquivion® Type Perfluorinated Proton-Conducting Membranes Prepared by Casting from Solution. Russ. J. Appl. Chem., 2018, 91, P. 101–104.

46. Peters G.S., Gaponov Yu.A., Konarev P.V., Marchenkova M., Ilina K., Volkov V.V., Pisarevsky Yu.V., Kovalchuk M.V. Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 2021, 1025, 166170.

47. Svergun D.I., Feigin L.A. Structure Analysis by Small-Angle X-ray and Neutron Scattering. Plenum Press, New York, USA; London, UK, 1987, 335 p.

48. Primachenko O.N., Kulvelis Yu.V., Odinokov A.S., Glebova N.V., Krasnova A.O., Antokolskiy L.A., Nechitailov A.A., Shvidchenko A.V., Gofman I.V., Marinenko E.A., Yevlampieva N.P., Lebedev V.T., Kuklin A.I. New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance. Membranes, 2022, 12 (9), 827.

49. Semenov V.G., Moskvin L.N., Ufimov A.A. Analytical potential of Mossbauer spectroscopy. ¨ Russ. Chem. Rev., 2006, 75 (4), P. 317–327.

50. Kamzin A.S., Obaidat I.M., Kozlov V.S., Voronina E.V., Narayanaswamy V., Al-Omari I.A. Graphene Oxide/Iron Oxide (GrO/FeOx) Nanocomposites for Biomedicine: Synthesis and Study. Physics of the Solid State, 2021, 63 (6), P. 856–865.

51. Kamzin A.S., Obaidat I.M., Kozlov V.S., Voronina E.V., Narayanaswamy V., Al-Omari I.A. Magnetic Nanocomposites Graphene Oxide/Magnetite + Cobalt Ferrite (GrO/Fe3O4 + CoFe2O4) for Magnetic Hyperthermia. Physics of the Solid State, 2021, 63, P. 998–1008.

52. Lebedev V.T., Kulvelis Yu.V., Tor¨ ok Gy., Ivankov O.I., Polotskaya G.A., Vinogradova L.V., Vul A.Ya., Primachenko O.N., Marinenko E.A., ¨ Odinokov A.S. Structure of diffusive polymer membranes for molecular and ionic transport. J. of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 (5), P. 939–946. ©Pleiades Publishing, Ltd., 2021. ISSN 1027-4510.

53. Popov I., Zhu Z., Young-Gonzales A.R., Sacci R.L., Mamontov E., Gainaru C., Paddison S.J., Sokolov A.P. Search for a Grotthuss mechanism through the observation of proton transfer. Commun. Chem., 2023, 6, 77.

54. Tauc J., Menth A., Wood D. Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses. Phys. Rev. Lett., 1970, 25, P. 749–752.

55. Dorranian D., Abedini Z., Hojabri A., Ghoranneviss M. Structural and optical characterization of PMMA surface treated in low power nitrogen and oxygen RF plasmas. J. of Non-Oxide Glasses, 2009, 1 (3), P. 217–229.

56. Mishjil K.A., Chiad S.S., Abass K., Habubi N.F. Effect of Al doping on structural and optical parameters of ZnO thin films. Materials Focus, 2016, 5 (5), P. 471–475.

57. Latif D.M.A., Chiad S.S., Erhayief M.S., Abass K.H., Habubi N.F., Hussin H.A. Effects of FeCl3 additives on optical parameters of PVA. IOP Conf. Series: J. of Physics: Conf. Series, 2018, 1003, 012108.

58. Reichmanis E., Donnel J.O. Irradiation of Polymeric Materials, and the Effect of Radiation on High Technology Polymers. ACS Symposium Series, 1993, 381 (527), 108.

59. Omer M.A.A., Gar-elnabi M.E.M., Ahmed A.H., Eidam G.A., Khidir N.A.N. Radiochemical Properties of Irradiated PVA\AgNO3 Film by Electron Beam. Int. J. of Science and Research, 2013, 2 (9), P. 361–364.

60. Bauminger E.R., Levy A., Labenski de Kanter F., Ofer S., Heitner-Wirquin C. Mossbauer spectra of iron containing Nafion membranes. ¨ J. de Physique. Colloque C1, 1980, 41 (1), 329.

61. Lechan R., Nicolini C., Abeledo C.R., Frankel R.B. Hyperfine Interactions in the Intramolecular Antiferromagnet (Fe salen C1)2. J. Chem. Phys., 1973, 59 (6), P. 3138–3142.

62. Rodmacq B., Pineri M., Coey J.M.D., Meagher A. Moussbauer spectroscopy of Nafion polymer membranes exchanged with Fe ¨ 2+, Fe3+, and Eu3+. J. Polym. Sci. Polym. Phys. Ed., 1982, 20 (4), P. 603–619.

63. Freitknecht W., Giovanoli R., Michaelis W., Miiller M. Uber die Hydrolyse von Eisen(III)Salzl ¨ osungen. I. Die Hydrolyse der L ¨ osungen von ¨ Eisen(III)chlorid. Helv. Chim. Acta, 1973, 56 (8), P. 2847–2856.

64. Knudsen L.M., Larsen E., Moreira J.E., Nielsen O.F. Characterization of Decaaqua-mu-oxodi-iron(III) by Mossbauer and Vibrational Spec- ¨ troscopy. Acta. Chem. Scand. Sect. A, 1975, 29 (9), P. 833–839.


Review

For citations:


Lebedev V.T., Kozlov V.S., Remizov M.V., Kulvelis Yu.V., Primachenko O.N., Marinenko E.A., Peters G.S. Ionic channel structure in perfluorinated membranes studied by small angle X-ray scattering, optical and Mossbauer spectroscopy. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):716-725. https://doi.org/10.17586/2220-8054-2024-15-5-716-725

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)