Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

An inversion formula for the weighted Radon transform along family of cones

https://doi.org/10.17586/2220-8054-2023-14-1-22-27

Abstract

In this paper, an inversion problem for the weighted Radon transform along family of cones in threedimensional space is considered. An inversion formula for the weighted Radon transform is obtained for the case when the range is a space of infinitely smooth functions.

About the Authors

M. I. Muminov
Samarkand State University; V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
Uzbekistan

Mukhiddin I. Muminov,

140100, Samarkand;

100174, Tashkent.



Z. Kh. Ochilov
Samarkand State University
Uzbekistan

Zarifjon Kh. Ochilov,

140100, Samarkand.



References

1. Radon J. Uber die bestimmung von funktionen durch ihre integralwerte lngs gewisser mannigfaltigkeiten. Berichte¨ uber die Verhandlungen der¨ Koniglich-S¨ achsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 1917,¨ 69, P. 262–277.

2. Vassholz M., Koberstein-Schwarz B., Ruhlandt A., Krenkel M. and Salditt T. New X-ray tomography method based on the 3d Radon transform compatible with anisotropic sources. Physical Review Letters, 2016, 116(8), P. 088101.

3. Frikel J., Quinto E.T. Limited data problems for the generalized Radon transform in Rn, SIAM J. Math. Anal., 2016, 48(4), P. 2301–2318.

4. Seeck O.H., Murphy B. (Eds.) X-Ray Diffraction: Modern Experimental Techniques (1st ed.). Jenny Stanford Publishing, 2014.

5. Goncharov F.O., Novikov R.G. An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions. Inverse Problem, 2018, 34, P. 054001.

6. Goncharov F.O., Novikov R.G. An analog of Chang inversion formula for weighted Radon transforms in multidimensions. Eurasian Journal of Mathematical and Computer Applications, 2016, 4(2), P. 23–32.

7. Goncharov F.O. A geometric based preprocessing for weighted ray transforms with applications in SPECT, Journal of Inverse and Ill-posed Problems, 2021, 29(3), P. 435–457.

8. Lavrentyev M.M., Savelyev L.Ya. Operator theory and ill-posed problems. Publishing house of the Institute of Mathematics, Moscow, 2010. [9] Kabanikhin S.I. Inverse and ill-posed problems. Siberian Scientific Publishing House, 2009.

9. Begmatov A.Kh., Muminov M.E., Ochilov Z.H. The problem of integral geometry of Volterra type with a weight function of a special type. Mathematics and Statistics, 2015, 3, P. 113–120.

10. Ochilov Z.X. The uniqueness of solution problems of integral geometry a family of parabolas with a weight function of a special type. Uzbek Mathematical Journal, 2020, 3, P. 107–116.

11. Ochilov Z.Kh. Existence of solutions to problems of integral geometry by a family of parabolas with a weight function of a special form. Bull. Inst. Math., 2021, 4(4), P. 28–33.

12. Helgason S. Integral Geometry and Radon Transform. Springer, New York, 2011.

13. Natterer F. The mathematics of computerized tomography, Classics in Mathematics. Society for Industrial and Applied Mathematics, New York, 2001.

14. Polyanin A.D., Manzhirov A.V. Handbook of Integral Equations. CRC Press LLC, N.W. Corporate Blvd., Boca Raton, Florida, 2000.

15. Gradsteyn I.S., Ryzhik I.M. Table of Integrals. Series, and Products, Academic Press, New York, 2007.


Review

For citations:


Muminov M.I., Ochilov Z.Kh. An inversion formula for the weighted Radon transform along family of cones. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):22-27. https://doi.org/10.17586/2220-8054-2023-14-1-22-27

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)