Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Induced surface photovoltage in TiO2 sol-gel nanoparticles

https://doi.org/10.17586/2220-8054-2023-14-4-447-453

Abstract

TiO2 nanoparticles synthesized by the sol-gel method and modified by annealing in air and hydrogen atmospheres were studied by surface photovoltage spectroscopy (SPS). SPS measurements showed that the modified in air TiO2 nanoparticles have a more intense signal than those treated in hydrogen. A linear correlation was found between the SPS and the diffuse reflectance spectra of the samples.

About the Authors

I. B. Dorosheva
Ural Federal University; Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Irina B. Dorosheva 

Mira str., 19, Yekaterinburg, 620002;  Amundsena str., 101, Yekaterinburg, 620016



A. S. Vokhmintsev
Ural Federal University
Russian Federation

Alexander S. Vokhmintsev

Mira str., 19, Yekaterinburg, 620002



I. A. Weinstein
Ural Federal University; Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ilya A. Weinstein

Mira str., 19, Yekaterinburg, 620002 ; Amundsena str., 101, Yekaterinburg, 620016



A. A. Rempel
Ural Federal University; Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Andrey A. Rempel

Mira str., 19, Yekaterinburg, 620002 ; Amundsena str., 101, Yekaterinburg, 620016



References

1. Valeeva A.A., Dorosheva I.B., Kozlova E.A., Kamalov R.V., Vokhmintsev A.S., Selishchev D.S., Saraev A.A., Gerasimov E.Y., Weinstein I.A., Rempel A.A. Influence of Calcination on Photocatalytic Properties of Nonstoichiometric Titanium Dioxide Nanotubes. Journal of Alloys and Compounds, 2019, 796, P. 293–299.

2. Valeeva A.A., Kozlova E.A., Vokhmintsev A.S., Kamalov R.V., Dorosheva I.B., Saraev A.A., Weinstein I.A., Rempel A.A. Nonstoichiometric Titanium Dioxide Nanotubes with Enhanced Catalytical Activity under Visible Light. Scientific Reports, 2018, 8(1), P. 1–10.

3. Sreekantan S., Hazan R., Lockman Z. Photoactivity of Anatase-Rutile TiO2 Nanotubes Formed by Anodization Method. Thin Solid Films, 2009, 518(1), P. 16–21.

4. Camacho-Munoz D., Lawton L.A., Edwards C. Degradation of Okadaic Acid in Seawater by UV/TiO ˜ 2 Photocatalysis – Proof of Concept. Science of The Total Environment, 2020, 733, P. 139346.

5. Melchakova O.V., Pechishcheva N.V., Korobitsyna A.D. Mechanically Activated Rutile and Its Sorption Properties with Regard to Gallium and Germanium. Tsvetnye Metally, 2019, 1, P. 32–39.

6. Method for obtaining a sorbent based on nanosized titanium dioxide. Method for obtaining a sorbent based on nanosized titanium dioxide: Patent 2790032 Russia B01J20/06 B01J20/30 C02F1/28 C02F1/62 B82B3/00. Dorosheva I.B., Pechishcheva N.V., Rempel A.A., patent holder, N 2790032.

7. Miller S.M., Spaulding M.L., Zimmerman J.B. Optimization of Capacity and Kinetics for a Novel Bio-Based Arsenic Sorbent, TiO2-Impregnated Chitosan Bead. Water Research, 2011, 45(17), P. 5745–5754.

8. Valeeva A.A., Dorosheva I.B., Kozlova E.A., Sushnikova A.A., Kurenkova A.Y., Saraev A., Schroettner H., Rempel A. Solar Photocatalysts Based on Titanium Dioxide Nanotubes for Hydrogen Evolution from Aqueous Solutions of Ethanol. International Journal of Hydrogen Energy, 2021, 46(32), P. 16917–16924.

9. Zheng L., Teng F., Ye X., Zheng H., Fang X. Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures. Advanced Energy Materials, 2020, 10(1), P. 1902355.

10. Kapilashrami M., Zhang Y., Liu Y.S., Hagfeldt A., Guo J. Probing the Optical Property and Electronic Structure of TiO2 nanomaterials for Renewable Energy Applications. Chemical Reviews, 2014, 114(19), P. 9662–9707.

11. Vokhmintsev A.S., Weinstein I.A., Kamalov R.V., Dorosheva I.B. Memristive Effect in a Nanotubular Layer of Anodized Titanium Dioxide. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78(9), P. 932–935.

12. Lettieri S., Pavone M., Fioravanti A., Amato L.S., Maddalena P. Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials, 2021, 14(7), P. 1–57.

13. Dash C.S., Sahoo S., Prabaharan S.R.S. Resistive Switching and Impedance Characteristics of M/TiO2−x/TiO2/M Nano-Ionic Memristor. Solid State Ionics, 2018, 324, P. 218–225.

14. Dorosheva I.B., Valeeva A.A., Rempel A.A., Trestsova M.A., Utepova I.A., Chupakhin O.N. Synthesis and Physicochemical Properties of Nanostructured TiO2 with Enhanced Photocatalytic Activity. Inorganic Materials, 2021, 57(5), P. 503–510.

15. Dorosheva I.B., Rempel A.A., Trestsova M.A., Utepova I.A., Chupakhin O.N. Synthesis of a TiO2 Photocatalyst for Dehydrogenative CrossCoupling of (Hetero)Arenes. Inorganic Materials, 2019, 55(2), P. 155–161.

16. Elsayed D.A., Assy M.G., Mousa S.M., El-Bassyouni G.T., Mouneir S.M., Shehab W.S. TiO2 Nanoparticle as Catalyst for an Efficient Green One-Pot Synthesis of 1H-3-Indolyl Derivatives as Significant Antiviral Activity. Bioorganic Chemistry, 2022, 124, P. 105805.

17. Ye Y., Feng Y., Bruning H., Yntema D., Rijnaarts H.H.M. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Applied Catalysis B: Environmental, 2018, 220, P. 171–181.

18. Niu B., Wang X., Wu K., He X., Zhang R. Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology. Materials, 2018, 11(10), P. 1–23.

19. He F., Li J., Li T., Li G. Solvothermal Synthesis of Mesoporous TiO2: The Effect of Morphology, Size and Calcination Progress on Photocatalytic Activity in the Degradation of Gaseous Benzene. Chemical Engineering Journal, 2014, 237, P. 312–321.

20. Macak J.M., Hildebrand H., Marten-Jahns U., Schmuki P. Mechanistic Aspects and Growth of Large Diameter Self-Organized TiO2 Nanotubes. Journal of Electroanalytical Chemistry, 2008, 621(2), P. 254–266.

21. Tay Q., Liu X., Tang Y., Jiang Z., Sum T.C., Chen Z. Enhanced Photocatalytic Hydrogen Production with Synergistic Two-Phase Anatase/Brookite TiO2 Nanostructures. Journal of Physical Chemistry C, 2013, 117(29), P. 14973–14982.

22. Liu N., Chen X., Zhang J., Schwank J.W. A Review on TiO2-Based Nanotubes Synthesized via Hydrothermal Method: Formation Mechanism, Structure Modification, and Photocatalytic Applications. Catalysis Today, 2014, 225, P. 34–51.

23. Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. Titanium Dioxide Nanotubes: Synthesis, Structure, Properties and Applications. Russian Chemical Reviews, 2021, 90(11), P. 1397–1414.

24. Zhou X., Nguyen N.T., Ozkan S., Schmuki P. Anodic TiO ¨ 2 Nanotube Layers: Why Does Self-Organized Growth Occur—A Mini Review. Electrochemistry Communications, 2014, 46, P. 157–162.

25. Sotelo-Vazquez C., Quesada-Cabrera R., Darr J.A., Parkin I.P. Single-Step Synthesis of Doped TiO2 Stratified Thin-Films by AtmosphericPressure Chemical Vapour Deposition. Journal of Materials Chemistry A, 2014, 2(19), P. 7082–7087.

26. Byun D., Jin Y., Kim B., Kee Lee J., Park D. Photocatalytic TiO2 Deposition by Chemical Vapor Deposition. Journal of Hazardous Materials, 2000, 73(2), P. 199–206.

27. Pradhan S.K., Reucroft P.J., Yang F., Dozier A. Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition. Journal of Crystal Growth, 2003, 256(1–2), P. 83–88.

28. Baran E., YazIcI B. Effect of Different Nano-Structured Ag Doped TiO2-NTs Fabricated by Electrodeposition on the Electrocatalytic Hydrogen Production. International Journal of Hydrogen Energy, 2016, 41(4), P. 2498–2511.

29. Cheng X., Pan G., Yu X. Visible Light Responsive Photoassisted Electrocatalytic System Based on CdS NCs Decorated TiO2 Nano-Tube Photoanode and Activated Carbon Containing Cathode for Wastewater Treatment. Electrochimica Acta, 2015, 156, P. 94–101.

30. Ishikawa Y., Matsumoto Y. Electrodeposition of TiO2 Photocatalyst into Nano-Pores of Hard Alumite. Electrochimica Acta, 2001, 46(18), P. 2819– 2824.

31. Karuppuchamy S., Amalnerkar D.P., Yamaguchi K., Yoshida T., Sugiura T., Minoura H. Cathodic Electrodeposition of TiO2 Thin Films for Dye-Sensitized Photoelectrochemical Applications. Chemistry Letters, 2002, 1, P. 78–79.

32. Ibrahim A., Mekprasart W., Pecharapa W. Anatase/Rutile TiO2 Composite Prepared via Sonochemical Process and Their Photocatalytic Activity. Materials Today: Proceedings, 2017, 4(5), P. 6159–6165.

33. Arami H., Mazloumi M., Khalifehzadeh R., Sadrnezhaad S.K. Sonochemical Preparation of TiO2 Nanoparticles. Materials Letters, 2007, 61(23– 24), P. 4559–4561.

34. Guo W., Lin Z., Wang X., Song G. Sonochemical Synthesis of Nanocrystalline TiO2 by Hydrolysis of Titanium Alkoxides. Microelectronic Engineering, 2003, 66(1–4), P. 95–101.

35. Yu J.C., Zhang L., Yu J. Direct Sonochemical Preparation and Characterization of Highly Active Mesoporous TiO2 with a Bicrystalline Framework. Chemistry of Materials, 2002, 14(11), P. 4647–4653.

36. Selvam T.P., Kumar P.V., Saravanan G., Prakash C.R. Microwave-Assisted Synthesis, Characterization and Biological Activity of Novel Pyrazole Derivatives. Journal of Saudi Chemical Society, 2014, 18(6), P. 1015–1021.

37. Suwarnkar M.B., Dhabbe R.S., Kadam A.N., Garadkar K.M. Enhanced Photocatalytic Activity of Ag Doped TiO2 Nanoparticles Synthesized by a Microwave Assisted Method. Ceramics International, 2014, 40(4), P. 5489–5496.

38. Magdalane C.M., Priyadharsini G.M.A., Kaviyarasu K., Jothi A.I., Simiyon G.G. Synthesis and Characterization of TiO2 Doped Cobalt Ferrite Nanoparticles via Microwave Method: Investigation of Photocatalytic Performance of Congo Red Degradation Dye. Surfaces and Interfaces, 2021, 25, P. 101296.

39. Pol V.G., Langzam Y., Zaban A. Application of Microwave Superheating for the Synthesis of TiO2 Rods. Langmuir, 2007, 23(22), P. 11211–11216.

40. Haider A.J., Jameel Z.N., Al-Hussaini I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia, 2019, 157, P. 17–29.

41. Wang S., Zheng M., Jiang D., - al, Zhu Z., Wei K., Li H., Cai G., Chen Z., Qiang L. Synthesis and UV Detection Characteristics of TiO2 Thin Film Prepared through Sol Gel Route. IOP Conference Series: Materials Science and Engineering, 2018, 360(1), P. 012056.

42. Rempel A.A., Kuznetsova Y.V., Dorosheva I.B., Valeeva A.A., Weinstein I.A., Kozlova E.A., Saraev A.A., Selishchev D.S. High Photocatalytic Activity Under Visible Light of Sandwich Structures Based on Anodic TiO2/CdS Nanoparticles/Sol–Gel TiO2. Topics in Catalysis, 2020, 63(1–2), P. 130–138.

43. Dorosheva I.B., Adiyak E.V., Valeeva A.A., Rempel A.A. Synthesis of Nonstoichiometric Titanium Dioxide in the Hydrogen Flow. AIP Conference Proceedings, 2019, 2174, P. 020019.

44. Kamalov R., Vokhmintsev A., Dorosheva I., Kravets N., Weinstein I. Synthesis of Composite Based on Carbon Nanotubes and Anodic Titania. Advanced Science Letters, 2016, 22(3), P. 688–690.

45. Rempel A.A., Kozlova E.A., Gorbunova T.I., Cherepanova S.V., Gerasimov E.Y., Kozhevnikova N.S., Valeeva A.A., Korovin E.Y., Kaichev V.V., Shchipunov Y.A. Synthesis and Solar Light Catalytic Properties of Titania-Cadmium Sulfide Hybrid Nanostructures. Catalysis Communications, 2015, 68, P. 61–66.

46. Wang Y., He Y., Lai Q., Fan M. Review of the Progress in Preparing Nano TiO2: An Important Environmental Engineering Material. Journal of Environmental Sciences (China), 2014, 26(11), P. 2139–2177.

47. El-Bahy Z.M., Ismail A.A., Mohamed R.M. Enhancement of Titania by Doping Rare Earth for Photodegradation of Organic Dye (Direct Blue). Journal of Hazardous Materials, 2009, 166(1), P. 138–143.

48. Humayun M., Raziq F., Khan A., Luo W. Modification Strategies of TiO2 for Potential Applications in Photocatalysis: A Critical Review. Green Chemistry Letters and Reviews, 2018, 11(2), P. 86–102.

49. Gupta B., Melvin A.A., Matthews T., Dash S., Tyagi A.K. TiO2 Modification by Gold (Au) for Photocatalytic Hydrogen (H2) Production. Renewable and Sustainable Energy Reviews, 2016, 58, P. 1366–1375.

50. Lenzmann F., Krueger J., Burnside S., Brooks K., Gra M., Gal D., Ru S., Cahen D. Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection. ACS Publications, 2001, 105(27), P. 6347– 6352.

51. Yanhong L., Dejun W., Qidong Z., Min Y., Qinglin Z. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy. Journal of Physical Chemistry B, 2004, 108(10), P. 3202–3206.

52. Kronik L., Shapira Y. Surface Photovoltage Phenomena: Theory, Experiment, and Applications. Surface Science Reports, 1999, 37(1), P. 1–206.

53. Xin B., Jing L., Ren Z., Wang B., Fu H. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2. The Journal of Physical Chemistry B, 2005, 109(7), P. 2805–2809.

54. Liqiang J., Dejun W., Baiqi W., Shudan L., Baifu X., Honggang F., Jiazhong S. Effects of Noble Metal Modification on Surface Oxygen Composition, Charge Separation and Photocatalytic Activity of ZnO Nanoparticles. Molecular Catalysis, 2006, 244(1–2), P. 193–200.

55. Chakrabarti S., Ganguli D., Chaudhuri S. Photoluminescence of ZnO Nanocrystallines Confined in Sol-Gel Silica Matrix. Journal of Physics D: Applied Physics, 2003, 36(2), P. 146–151.

56. Dorosheva I.B., Valeeva A.A., Rempel A.A. Sol-Gel Synthesis of Nanosized Titanium Dioxide at Various PH of the Initial Solution. AIP Conference Proceedings, 2017, 1886(1), P. 020006.

57. Dorosheva I.B., Weinstein I.A., Rempel A.A. Electrochemical and Sol-Gel Synthesis of Nanostructured Titania Photocatalyst Acting under Sunlight, 16TH IUPAC HIGH TEMPERATURE MATERIAL CHEMISTRY CONFERENCE (HTMC-XVI) Yekaterinburg, 2018, 272 p.

58. Electroluminescent cell. Electroluminescent cell: patent 151492 Russia H05B 33/20 G01N 21/66. Vokhmintsev A.S., Fedorov M.D., Weinshtein I.A., patent holder. N 151492.59.

59. Lu Y., Yuan M., Liu Y., Tu B., Xu C., Liu B., Zhao D., Kong J. Photoelectric Performance of Bacteria Photosynthetic Proteins Entrapped on Tailored Mesoporous WO3-TiO2 Films. Langmuir, 2005, 21(9), P. 4071–4076.

60. Liqiang J., Honggang F., Baiqi W., Dejun W., Baifu X., Shudan L., Jiazhong S. Effects of Sn Dopant on the Photoinduced Charge Property and Photocatalytic Activity of TiO2 Nanoparticles. Applied Catalysis B: Environmental, 2006, 62(3–4), P. 282–291.

61. Jing L., Li S., Song S., Xue L., Fu H. Investigation on the Electron Transfer between Anatase and Rutile in Nano-Sized TiO2 by Means of Surface Photovoltage Technique and Its Effects on the Photocatalytic Activity. Solar Energy Materials and Solar Cells, 2008, 92(9), P. 1030–1036.


Review

For citations:


Dorosheva I.B., Vokhmintsev A.S., Weinstein I.A., Rempel A.A. Induced surface photovoltage in TiO2 sol-gel nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(4):447-453. https://doi.org/10.17586/2220-8054-2023-14-4-447-453

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)