Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Application of carbon nanomaterials in semiconductor electronics

https://doi.org/10.17586/2220-8054-2025-16-2-216-224

Abstract

This review examines the development of modern semiconductor technologies using various carbon nanomaterials, as an element base, to replace classical semiconductors (silicon, germanium, etc.). Examples of specific electronic devices demonstrate the gradual displacement of classical semiconductors by carbon compounds, which are much more promising, with the potential to create all-carbon electronics.

About the Authors

R. V. Shalayev
Galkin Donetsk Institute for Physics and Engineering
Russian Federation

Rostyslav V. Shalayev

R. Luxembourg str. 72, 283048, Donetsk



V. N. Varyukhin
Galkin Donetsk Institute for Physics and Engineering
Russian Federation

Victor N. Varyukhin

R. Luxembourg str. 72, 283048, Donetsk



References

1. Smirnov V.I. Nanoelectronics, nanophotonics and microsystems engineering: a tutorial. UlSTU, Ulyanovsk, 2017, 280 p.

2. Kelsall R., Hemley I., Geoghegan M. Scientific foundations of nanotechnology and new devices. Intellect, Moscow, 2008, 800 p.

3. Georgakilas V., Perman J.A., Tucek J., Zbo ˇ ˇril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical reviews, 2015, 115 (11), P. 4744–4822.

4. Podgorny D.A. Carbon in all its diversity: a tutorial. SUrSU, Chelyabinsk, 2014, 31 p.

5. Avouris P., Chen Z., Perebeinos V. Carbon-based electronics. Nat. Nanotechnol., 2007, 2, P. 605–615.

6. Nicholas R., Mainwood A., Eaves L. Introduction. Carbon-based electronics: Fundamentals and device applications. Philosophical transactions A., 2007, 366, P. 189-193.

7. Kang Y.H. Semiconductor Technologies in the Era of Electronics. Springer, Dordrecht, 2014, 149 p.

8. Gubin S.P. All-carbon nanoelectronics (project). Radioelectronics. Nanosystems. Information technology, 2011, 3 (1), P. 47-55.

9. Weiss P.S. A Conversation with Phaedon Avouris, nanoscience Leader of IBM. ACS Nano, 2010, 4 (12), P. 7041–7047.

10. Dyachkov P.N. Carbon nanotubes. Structure, properties, applications. Binom, Moscow, 2006, 293 p.

11. Kronholm D., Hummelen J.C. Fullerene-Based n-Type Semiconductors in Organic Electronics. Material Matters., 2007, 2, P. 16–19.

12. Tuktarov A.R., Salikhov R.B., Khuzin A.A., Popod’ko N.R., Safargalin I.N., Mullagaliev I.N., Dzhemileva U.M. Photocontrolled organic field effect transistors based on the fullerene C60 and spiropyran hybrid molecule. RSC Adv., 2019, 9, P. 7505–7508.

13. Woebkenberg P.H., Bradley D.C., Kronholm D., Hummelen J.C., de Leeuw D.M., Coelle M., Anthopoulos T.D. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synthetic Metals, 2008, 158 (11), P. 468–472.

14. Park H., Park J., Lim A.K.L., Anderson E.H., Alivisatos A.P., McEuen P.L. Nanomechanical oscillations in a single-C60 transistor. Nature, 2000, 407, P. 57–60.

15. Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (5), P. 56–58.

16. Jagessar R.C. Carbon Nanotubes and its Application in Nanotechnology. J. of Nanosciences Research & Reports, 2021, 3 (4), P. 1–4.

17. Wang C., Zhang J., Ryu K., Badmaev A., Arco L. G. D., Zhou C. Wafer-Scale Fabrication of Separated Carbon Nanotube Thin-Film Transistors for Display Applications. Nano Lett., 2009, 9 (12), P. 4285–4291.

18. Crippa P., Biagetti G., Turchetti C., Falaschetti L. et al. A high-gain CNTFET-based LNA developed using a compact design-oriented device model. Electronics, 2021, 10 (22), P. 2835–2914.

19. Zhang Z., Passlack M., Pitner G., Natani Sh. et al. Complementary carbon nanotube metal–oxide–semiconductor field-effect transistors with localized solid-state extension doping. Nat. Electron., 2023, 6, P. 999–1008.

20. Lee Y., Buchheim J., Hellenkamp B., Lynall D. et al. Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics. Nat. Nanotechnol., 2024, 19, P. 660–667.

21. Gilmer D.C., Rueckes T., Cleveland L. NRAM: A disrupting carbon-nanotube resistance-change memory. Nanotechnology, 2018, 29, 134003.

22. Qu T.Yu., Sun Y., Chen M., Liu Z., Zhu Q.B. et al. A Flexible Carbon Nanotube Sen-Memory Device. Advanced Materials, 2020, 32 (9), 1907288.

23. Lee N.-S., Chung D., Han I., Kang J.H. et al. Application of carbon nanotubes to field emission displays. Diamond and Related Materials, 2001, 10, P. 265–270.

24. McCarthy M.A., Liu B., Donoghue E.P., Kravchenko I., Kim D.Y., So F., Rinzler A.G. Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science, 2011, 332, P. 570–573.

25. Cai L., Wang C. Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale research letters, 2015, 10 (1), P. 1013–1021.

26. Shalaev R.V., Ulyanov A.N., Prudnikov A.M., Shin G.M., Yoo S.I., Varyukhin V.N. Noncatalytic synthesis of carbon-nitride nanocolumns by DC magnetron sputtering. Phys.Status Solidi A., 2010, 207 (10), P. 2300-2302.

27. Liechtenstein I.Ya., Schemchenko E.I., Varyukhin V.N. Mechanism of formation of the internal structure in multi-walled carbon nanotubes produced by a DC-magnetron. PHPT, 2021, 31 (4), P. 42–47.

28. Shulaker M.M., Hills G., Patil N., Hai W., Chen H.Y., Wong H.S.P., Mitra S. Carbon nanotube computer. Nature, 2013, 501, P. 526–530.

29. Hills G., Lau C., Wright A., Fuller S., Bishop M.D. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature, 2019, 572, P. 595–602.

30. Si J., Zhang P., Zhao C., Lin D., Xu L., Xu H. et al. A carbon-nanotube-based tensor processing unit. Nature Electronics, 2024, 7, P. 684–693.

31. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, P. 666-669.

32. Avouris P., Xia F. Graphene applications in electronics and photonics. MRS Bulletin, 2012, 37, P. 1225–1234.

33. Golovanov O.A., Makeeva G.S., Varenitsa V.V. Conductivity of graphene in the terahertz and infrared frequency ranges. Reliability and Quality of Complex Systems, 2014, 4 (8), P. 26–33.

34. Meric I., Han M.Y., Young A.F. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature nanotechnology, 2008, 3 (11), P. 654–659.

35. Svintsov D.A., Vyurkov V.V., Lukichev V.F., Orlikovsky A.A., Burenkov A., Ochsner R. Tunnel field-effect transistors based on graphene. Semiconductors, 2013, 47 (2), P. 244–250.

36. Hu B., Sun H., Tian J., Mo J., Xie W., Song Q.M., Zhang W., Dong H. Advances in flexible graphene field-effect transistors for biomolecule sensing. Front. Bioeng. Biotechnol., 2023, 11, 1218024.

37. Hong A., Song E.B., Yu H.S., Allen M.J., Kim J., Fowler J.D. et al. Graphene flash memory. ACS nano, 2011, 5 (10), P. 7812-7817.

38. Wang G., Lee J.-H., Yang Y., Ruan G., Kim N.D., Ji Y., Tour J.M. Three-Dimensional Networked Nanoporous Ta2O5−x Memory System for Ultrahigh Density Storage. Nano Letters, 2015, 15 (9), P. 6009–6014.

39. Zongjie S., Chun Z., Yanfei Q., Mitrovic I.Z., Li Y., Jiacheng W. et al. Memristive Non-Volatile Memory Based on Graphene Materials. Micromachines, 2020, 11 (4), 341.

40. Lin Yu-M., Valdes-Garcia A., Han S.-J., Farmer D. et al. Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, P. 1294–1297.

41. Fadil D., Passi V., Wei W., Ben Salk S., Zhou D. et al. A Broadband Active Microwave Monolithically Integrated Circuit Balun in Graphene Technology. Appl. Sci., 2020, 10, 2183:8.


Review

For citations:


Shalayev R.V., Varyukhin V.N. Application of carbon nanomaterials in semiconductor electronics. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):216-224. https://doi.org/10.17586/2220-8054-2025-16-2-216-224

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)