Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Structural, electrical, optical and phase investigation of perovskite barium zirconate (BaZrO3) nanoparticles prepared through auto-combustion technique

https://doi.org/10.17586/2220-8054-2023-14-4-467-478

Abstract

The BaZrO3 ceramics were prepared via sol-gel auto-combustion technique with three Fuel to Oxidant (F/O) ratios (ϕ = 0.5, 1.0 and 1.5) and annealed at 1200 ◦C for 2 hours. X-ray diffraction (XRD) and Rietveld refinement data confirmed the cubic perovskite phase with the Pm3m (221) space group. These three samples are well indexed in JCPDS no: 06-0399. The ratio F/O = 1.0 gives one a small crystallite size and very high surface area. The ratio F/O = 1.5 provides a very high crystallite size and very low dislocation density. The oxygen vacancies in the samples were analyzed using Raman spectroscopy. The optical band gap energy value increases from 2.02 to 3.09 eV with increasing F/O ratio. Using of impedance spectroscopy for BaZrO3 at room temperature allows us to reveal decreasing Ionic conductivity with an increasing F/O ratio. The Nyquist plot for all samples exhibits a circular arc in the high-frequency zone and nearly a straight line in the low-frequency region. Due to the presence of low grain boundary with high ionic conductivity the BaZrO3 electrolyte material is used for energy storage in devices. 

About the Authors

J. Abimalar
Department of Physics and Research Centre, Scott Christian College (Autonomous); Manonmaniam Sundaranar University
India

J. Abimalar 

Nagercoil – 629003, Tamil Nadu; Abishekapatti, Tirunelveli – 627012, Tamil Nadu



V. Anslin Ferby
Department of Physics and Research Centre, Scott Christian College (Autonomous); Manonmaniam Sundaranar University
Russian Federation

V. Anslin Ferby

Nagercoil – 629003, Tamil Nadu; Abishekapatti, Tirunelveli – 627012, Tamil Nadu



References

1. Norton F.H. Fine ceramics: technology and applications. McGraw-Hill, New York, 1970. [2] Boschini F., Rulmont A., Cloots R., Moreno, R. Rheological behaviour of BaZrO3 suspensions in non-aqueous media. Ceramics International, 2009, 35 (3), P. 1007–1013.

2. Huang J., Zhou L., Wang Z., Lan Y., Tong Z., Gong F., Li, L. Photoluminescence properties of SrZrO3: Eu3+ and BaZrO3: Eu3+ phosphors with perovskite structure. J. of Alloys and Compounds, 2009, 487 (1–2), L5–L7.

3. Iwahara H., Asakura Y., Katahira K., Tanaka, M. Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics, 2004, 168 (3–4), P. 299–310.

4. Kreuer K.D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics, 1999, 125 (1–4), P. 285–302.

5. Zhou H., Mao Y., Wong S.S. Shape control and spectroscopy of crystalline BaZrO3 perovskite particles. J. of Materials Chemistry, 2007, 17 (17), P. 1707–1713.

6. Dong Z., Ye T., Zhao Y., Yu J., Wang F., Zhang L., Guo S. Perovskite BaZrO3 hollow micro- and nanospheres: controllable fabrication, photoluminescence and adsorption of reactive dyes. J. of Materials Chemistry, 2011, 21 (16), P. 5978–5984.

7. Cavalcante L.S., Sczancoski J.C., Espinosa J.W.M., Mastelaro V.R., Michalowicz A., Pizani P.S., Longo E. Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J. of Alloys and Compounds, 2009, 471 (1–2), P. 253–258.

8. Parida S., Rout S.K., Cavalcante L.S., Sinha E., Li M.S., Subramanian V., Longo E. Structural refinement, optical and microwave dielectric properties of BaZrO3. Ceramics International, 2012, 38 (3), P. 2129–2138.

9. Choudhury P.R., Krupanidhi S.B. Dielectric response of BaZrO3/BaTiO3 and SrTiO3/BaZrO3 superlattices. J. of Applied Physics, 2008, 104 (11), 114105.

10. Moreira M.L., Gurgel M.F.C., Mambrini G.P., Leite E.R., Pizani P.S., Varela J.A., Longo E. Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature. The J. of Physical Chemistry A, 2008, 112 (38), P. 8938–8942.

11. Jia X., Fan H., Lou X., Xu J. Synthesis and gas sensing properties of perovskite CdSnO3 nanoparticles. Applied Physics A, 2009, 94, P. 837–841.

12. LoPinto D.E. Tunable Piezoelectric Transducers via Custom 3D Printing: Conceptualization, Creation, and Customer Discovery of Acoustic Applications. Virginia Tech, 2021.

13. Yamanaka S., Kurosaki K., Maekawa T., Matsuda T., Kobayashi S.I., Uno M. Thermochemical and thermophysical properties of alkaline-earth perovskites. J. of Nuclear Materials, 2005, 344 (1-3), P. 61–66.

14. Shirpour M., Rahmati B., Sigle W., van Aken P.A., Merkle, R., Maier J. Dopant segregation and space charge effects in proton-conducting BaZrO3 perovskites. The J. of Physical Chemistry C, 2012, 116 (3), P. 2453–2461.

15. Herbert J.M. Ceramic dielectrics and Capacitors, 1985, Vol. 6, Philadelphia.

16. Sundell P.G., Bjorketun M.E., Wahnstr ¨ om G. Thermodynamics of doping and vacancy formation in BaZrO ¨ 3 perovskite oxide from density functional calculations. Physical Review B, 2006, 73 (10), 104112.

17. Dhahri K., Bejar M., Dhahri E., Soares M. J., Grac¸a M.F.P., Sousa M.A., Valente M.A. Blue-green photoluminescence in BaZrO3−δ powders. Chemical Physics Letters, 2014, 610, P. 341–344.

18. Wan Ali W.F.F., Rejab N.A., Othman M., Ain M.F., Ahmad Z.A. An investigation of dielectric resonator antenna produced from silicon (100) enhanced by strontium doped-barium zirconate films. J. of sol-gel science and technology, 2012, 61, P. 411–420.

19. Park J.S., Lee J.H., Lee H.W., Kim B.K. Low temperature sintering of BaZrO3-based proton conductors for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2010, 181 (3–4), P. 163–167.

20. Cullity B.D. Elements of X-ray Diffraction, Addison-Wesley Publishing, 1956.

21. Kittel C., McEuen P. Introduction to solid state physics, John Wiley & Sons, 2018.

22. Patil K.C., Aruna S.T., Ekambaram S. Combustion synthesis. Current opinion in solid state and materials science, 1997, 2 (2), P. 158–165.

23. Jain S.R., Adiga K.C., Verneker V.P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combustion and flame, 1981, 40, P. 71–79.

24. Hwang C.C., Huang T.H., Tsai J.S., Lin C.S., Peng C.H. Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route. Materials Science and Engineering: B, 2006, 132 (3), P. 229–238.

25. Mukasyan A.S., Epstein P., Dinka, P. Solution combustion synthesis of nanomaterials. Proceedings of the combustion institute, 2007, 31 (2), P. 1789–1795.

26. Tyagi A.K., Chavan S.V., Purohit R.D. Visit to the fascinating world of nano-ceramic powders via solution-combustion. Indian J. of Pure & Applied Physics, 2006, 44 (2), P. 113–118.

27. Chen W., Li F., Yu J., Liu L. A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis. Materials Science and Engineering: B, 2006, 133 (1–3), P. 151–156.

28. Bedekar V., Grover V., Nair S., Purohit R.D., Tyagi A. K. Nanocrystalline electroceramics by combustion method. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2007, 37 (5), P. 321–326.

29. Xu Q., Huang D.P., Chen W., Lee J.H., Wang H., Yuan R.Z. Citrate method synthesis, characterization and mixed electronic–ionic conduction properties of La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type complex oxides. Scripta Materialia, 2004, 50 (1), P. 165–170.

30. Majid A., Tunney J., Argue S., Wang D., Post M., Margeson J. Preparation of SrFeO∼2.85 perovskite using a citric acid assisted Pechini-type method. J. of alloys and compounds, 2005, 398 (1–2), P. 48–54.

31. Palmisano P., Russo N., Fino P., Fino D., Badini C. High catalytic activity of SCS-synthesized ceria towards diesel soot combustion. Applied Catalysis B: Environmental, 2006, 69 (1–2), P. 85–92.

32. Carvalho M., Costa F.A., Pereira I.S., Bassat J., Grenier J. New preparation method of Lan+1 NinO3n+1−δ (n = 2, 3). J. of Materials Chemistry, 1997, 7 (10), P. 2107–2111.

33. Marinsek M., Zupan K., Maeek J. Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. ˇ J. of power sources, 2002, 106 (1–2), P. 178–188.

34. Chakroborty A., Sharma A.D., Maiti B., Maiti H.S. Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique. Materials letters, 2002, 57 (4), P. 862–867.

35. Mali A., Ataie A. Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol-gel combustion method. Ceramics International, 2004, 30 (7), P. 1979–1983.

36. Hernandez T., Bautista M.C. The role of the synthesis route to obtain densified TiO2-doped alumina ceramics. J. of the European Ceramic Society, 2005, 25 (5), P. 663–672.

37. Pechini M.P. US Patent No. 3330697, 1967, July.

38. Epifani M., Melissano E., Pace G., Schioppa M. Precursors for the combustion synthesis of metal oxides from the sol-gel processing of metal complexes. J. of the european ceramic society, 2007, 27 (1), P. 115–123.

39. Wang P.J., Zhou D., Li J., Pang L.X., Liu W.F., Su J.Z., Trukhanov A. Significantly enhanced electrostatic energy storage performance of P(VDFHFP)/BaTiO3–Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy, 2020, 78, 105247.

40. Trukhanov S.V., Trukhanov A.V., Turchenko V.A., Trukhanov A.V., Trukhanova E.L., Tishkevich D.I., Gudkova S.A. Polarization origin and iron positions in indium doped barium hexaferrites. Ceramics International, 2018, 44 (1), P. 290–300.

41. Kumar D., Singh B. BaZrO3 and Cs-BaZrO3 catalysed transesterification of Millettia Pinnata oil and optimisation of reaction variables by response surface Box-Behnken design. Renewable Energy, 2019, 133, P. 411–421.

42. Borja-Urby R., D´ıaz-Torres L.A., Salas P., Moctezuma E., Vega M., Angeles-Ch ´ avez C. Structural study, photoluminescence, and photocatalytic ´ activity of semiconducting BaZrO3: Bi nanocrystals. Materials Science and Engineering: B, 2011, 176 (17), P. 1382–1387.

43. Nehru L.C., Swaminathan V., Sanjeeviraja C. Photoluminescence studies on nanocrystalline tin oxide powder for optoelectronic devices. American J. of Materials Science, 2012, 2 (2), P. 6–10.

44. Beltran A., Andr ´ es J., Longo E., Leite E.R. Thermodynamic argument about SnO ´ 2 nanoribbon growth. Applied physics letters, 2003, 83 (4), P. 635–637.

45. Schmalzried H., Kroger F.A. ¨ The Chemistry of Imperfect Crystals, North-Holland Publishing Company, Amsterdam, 1964.

46. Bedir M., Oztas¸ M., Bakkalo ¨ glu ˇ O.F., Ormanci R. Investigations on structural, optical and electrical parameters of spray deposited ZnSe thin films ¨ with different substrate temperature. The European Physical J. B-Condensed Matter and Complex Systems, 2005, 45, P. 465–471.

47. Dhanam M., Balasundaraprabhu R., Jayakumar S., Gopalakrishnan P., Kannan M.D. Preparation and study of structural and optical properties of chemical bath deposited copper indium diselenide thin films. Physica Status Solidi A, 2002, 191 (1), P. 149–160.

48. Park J.Y., Lee Y.J., Jun K.W., Baeg J.O., Yim, D.J. Chemical synthesis and characterization of highly oil dispersed MgO nanoparticles. J. of Industrial and engineering chemistry, 2006, 12 (6), P. 882–887.

49. Azizi M., Paydar M.H., Alafzadeh M. Influence of the Calcination Temperature and Fuel Composition on Synthesis of BaZr0.8Y0.2O3−δ by Solution Combustion Method for High Proton conductivity. Int. J. of Advanced Science and Technology, 2016, 96, P. 11–20.

50. Elilarassi R., Chandrasekaran G. Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications. Optoelectronics Letters, 2010, 6 (1), P. 6–10.

51. Toniolo J., Takimi A.S., Andrade M.J., Bonadiman R., Bergmann C.P. Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles. J. of Materials Science, 2007, 42, P. 4785–4791.

52. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. of applied Crystallography, 1969, 2 (2), P. 65–71.

53. Rietveld H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 1967, 22 (1), P. 151–152.

54. Young R.A. The Rietveld method. Int. Union of Crystallography, 1993, 5, P. 1–38.

55. Sczancoski J.C., Cavalcante L.S., Badapanda T., Rout S.K., Panigrahi S., Mastelaro, V.R., Longo E. Structure and optical properties of [Ba1−xY2x/3](Zr0.25Ti0.75)O3 powders. Solid State Sciences, 2010, 12 (7), P. 1160–1167.

56. Schaufele R.F., Weber M.J. First- and second-order Raman scattering of SrTiO3. The J. of Chemical Physics, 1967, 46 (7), P. 2859–2861.

57. Charrier-Cougoulic I., Pagnier T., Lucazeau G. Raman spectroscopy of perovskite-type BaCexZr1−xO3 (0 ≤ x ≤ 1). J. of Solid State Chemistry, 1999, 142 (1), P. 220–227.

58. Karlsson M., Matic A., Knee C.S., Ahmed I., Eriksson S.G., Borjesson L. Short-Range Structure of Proton-Conducting Perovskite ¨ BaInxZr1−xO3−x/2 (x = 0–0.75). Chemistry of Materials, 2008, 20 (10), P. 3480–3486.

59. Kreuer K. On the development of proton conducting materials for technological applications. Solid State Ionics, 1997, 97 (1–4), P. 1–15.

60. Norby T., Larring Y. Concentration and transport of protons in oxides. Current Opinion in Solid State and Materials Science, 1997, 2 (5), P. 593– 599.

61. Karlsson M., Ahmed I., Matic A., Eriksson S.G. Short-range structure of proton-conducting BaM0.10Zr0.90O2.95 (M= Y, In, Sc and Ga) investigated with vibrational spectroscopy. Solid State Ionics, 2010, 181 (3–4), P. 126–129.

62. Slodczyk A., Colomban P., Willemin S., Lacroix O., Sala B. Indirect Raman identification of the proton insertion in the high-temperature [Ba/Sr][Zr/Ti]O3-modified perovskite protonic conductors. J. of Raman Spectroscopy: An Int. J. for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009, 40 (5), P. 513–521.

63. Slodczyk A., Limage M. H., Colomban P., Zaafrani O., Grasset F., Loricourt J., Sala B. Substitution and proton doping effect on SrZrO3 behaviour: High-pressure raman study. J. of Raman Spectroscopy, 2011, 42 (12), P. 2089–2099.

64. Li X., Liu M., Lai S.Y., Ding, D., Gong, M., Lee J.P., Liu M. In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells. Chemistry of Materials, 2015, 27 (3), P. 822–828.

65. Wood D.L., Tauc J.S. Weak absorption tails in amorphous semiconductors. Physical Review B, 1972, 5 (8), 3144.

66. Badapanda T., Rout S.K., Cavalcante L.S., Sczancoski J.C., Panigrahi S., Longo E., Li M.S. Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters. J. of Physics D: Applied Physics, 2009, 42 (17), 175414.

67. Turton R., Turton R.J. The quantum dot: A journey into the future of microelectronics. Oxford University Press, USA, 1996.

68. Macdonald J.R. Impedance spectroscopy: Models, data fitting, and analysis. Solid state ionics, 2005, 176 (25–28), P. 1961–1969.

69. Lvovich V.F. Electrochemical Impedance Spectroscopy (EIS) applications to sensors and diagnostics. Encyclopedia of Applied Electrochemistry, Eds.: Kreysa G., Ota K.-i., Savinell R.F., 2014, P. 485–507.

70. Orazem M.E., Tribollet B. Electrochemical impedance spectroscopy. New Jersey, 2008, 1, P. 383–389.

71. Ha L.D., Park K., Chang B.Y., Hwang S. Implementation of second-generation fourier transform electrochemical impedance spectroscopy with commercial potentiostat and application to time-resolved electrochemical impedance spectroscopy. Analytical chemistry, 2019, 91 (22), P. 14208– 14213.

72. Choi W., Shin H.C., Kim J.M., Choi J.Y., Yoon W.S. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. of Electrochemical Science and Technology, 2020, 11 (1), P. 1–13.

73. Wu H., Li F. Oxygen vacancy-assisted high ionic conductivity in perovskite LaCoO3−δ (δ = 1/3) thin film: A first-principles-based study. Physics Letters A, 2019, 383 (2–3), P. 210–214.

74. Cherian C.T., Zheng M., Reddy M.V., Chowdari B.V.R., Sow C.H. Zn2SnO4 nanowires versus nanoplates, electrochemical performance and morphological evolution during Li-cycling. ACS Applied Materials and Interfaces, 2013, 5 (13), P. 6054–6060.


Review

For citations:


Abimalar J., Anslin Ferby V. Structural, electrical, optical and phase investigation of perovskite barium zirconate (BaZrO3) nanoparticles prepared through auto-combustion technique. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(4):467-478. https://doi.org/10.17586/2220-8054-2023-14-4-467-478

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)