Elastic and thermal properties of some ternary β-Ti based alloys
https://doi.org/10.17586/2220-8054-2025-16-2-225-234
Abstract
The elastic moduli and some thermal properties of four series of ternary β-Ti based alloys of the XY3Ti11 composition, where X and Y are elements of IVB–VIB, IIIA and IVA groups, have been studied using the projector augmented wave method within the density functional theory. It has been shown that the calculated Young’s moduli in these series of alloys are lower than those in commercially pure α-Ti titanium or in the Ti-6Al-4V alloy. With an increase in the concentration of s,p-elements and the number of electrons in the d-band of the X-metal, the Young’s modulus tends to decrease. The variation of Debye temperature, acoustic Gruneisen parameter and thermal conductivity in titanium alloy series is discussed. It is shown that¨ high thermal conductivity correlates with high Debye temperature, which in turn increases with increase of the values of the Young’s modulus.
About the Authors
S. O. KasparyanRussian Federation
Sergey O. Kasparyan
Akademicheskii, 2/4, Tomsk, 634055
Lenina, 36, Tomsk, 634050
A. E. Ordabaev
Russian Federation
Adil E. Ordabaev
Lenina, 36, Tomsk, 634050
A. V. Bakulin
Russian Federation
Alexander V. Bakulin
Akademicheskii, 2/4, Tomsk, 634055
S. E. Kulkova
Russian Federation
Svetlana E. Kulkova
Akademicheskii, 2/4, Tomsk, 634055
References
1. Gunther V.E., Kotenko V.V., Mirgazizov M.Z., Polenichkin V.K., Vityugov I.A., Itin V.I., Ziganshin R.V., Temerhanov F.T. Shape memory alloys in medicine. TSU Publ., Tomsk, 1986, 208 p. (in Russian)
2. Long M., Rack H.J. Titanium alloys in total joint replacement – a materials science perspective. Biomater., 1998, 19, P. 1622–1639.
3. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater., 2003, 4, P. 445–454.
4. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater., 2008, 1, P. 30–42.
5. Zhang L.C., Chen L.Y. A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater., 2019, 21, 1801215.
6. Mohammed M.T., Khan Z.A., Siddiquee A.N. Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. Int. J. Mater. Metall. Eng., 2014, 8 (8), P. 822–827.
7. Yu Z. Titanium alloys for biomedical development and applications. Design, microstructure, properties, and application. Elsevier, Amsterdam, 2022, 232 p.
8. Hao C.P., Wang Q., Ma R.T., Wang Y.M., Qiang J.B., Dong C. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Phys. Sin., 2011, 60 (11), 116101.
9. Yan X., Cao W., Li H. Novel biomedical Ti-based alloys with low Young’s modulus: a first-principles study. J. Mater. Eng. Perform., 2024, 33, P. 6835–6842.
10. Kasparyan S.O., Bakulin A.V., Kulkova S.E. Mechanical properties of ternary XY3Ti11 alloys. Izvestiya vuzov. Fizika, 2024, 67, P. 77–85. (in Russian)
11. Bai H., Duan Y., Qi H., Peng M., Li M., Zheng S. Anisotropic elastic and thermal properties and damage tolerance of CrH: A first-principles calculation. Vacuum, 2024, 222, 112962.
12. Sun Y., Yang A., Duan Y., Shen L., Peng M., Qi H. Electronic, elastic, and thermal properties, fracture toughness, and damage tolerance of TM5Si3B (TM = V and Nb) MAB phases. Int. J. Refract. Met. Hard Mater., 2022, 103, 105781.
13. Blochl P.E. Projector augmented-wave method. ¨ Phys. Rev. B, 1994, 50 (24), P. 17953–17979.
14. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59 (3), P. 1758–1775.
15. Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49 (20), P. 14251–14269.
16. Kresse G., Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. ¨ Comput. Mater. Sci., 1996, 6, P. 15–50.
17. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18), P. 3865–3868.
18. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13 (12), P. 5188–5192.
19. Born M., Huang K. Dynamic theory of crystal lattices. Oxford University Press, London, 1954, 420 p.
20. Hill R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A, 1952, 65, P. 349–354.
21. Voigt W. Bestimmung der Elastizitatskonstanten von Eisenglanz. ¨ Ann. Phys., 1907, 327 (1), P. 129–140.
22. Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitatsbedingung f ¨ ur Einkristalle. ¨ Z. Angew. Math. Mech., 1929, 9 (1), P. 49–58.
23. Ledbetter H., Ogi H., Kai S., Kim S., Hirao M. Elastic constants of body-centered-cubic titanium monocrystals. J. Appl. Phys., 2004, 95 (9), P. 4642–4644.
24. Zhang Z., Li B., Chen L., Qin F., Hou Y. Measurement of elastic constants of additive manufactured Ti-6Al-4V by non-contact multi-mode laser ultrasonic system. J. Mater. Eng. Perform., 2022, 31, P. 7328–7336.
25. Pugh S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45 (367), P. 823–843.
26. Tian Y., Xu B., Zhao Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater., 2012, 33, P. 93–106.
27. Bakulin A.V., Kulkova S.E. Effect of impurities on the formation energy of point defects in the γ-TiAl alloy. J. Exp. Theor. Phys., 2018, 127 (6), P. 1046–1058.
28. Niu H., Niu S., Oganov A.R. Simple and accurate model of fracture toughness of solids. J. Appl. Phys., 2019, 125, 065105.
29. Gong X., Sun C.C. A new tablet brittleness index. Eur. J. Pharm. Biopharm., 2015, 93, P. 260–266.
30. Munro R.G., Freiman S.W., Baker T.L. Fracture toughness data for brittle materials. NIST Publ., Gaithersburg, 1998, 153 p.
31. Moruzzi V.L., Janak J.F., Schwarz K. Calculated thermal properties of metals. Phys. Rev. B, 1988, 37 (2), P. 790–799.
32. Liu X., Fu J. First principle study on electronic structure, elastic properties and Debye temperature of pure and doped KCaF3. Vacuum, 2020, 178, 109504.
33. Music D., Houben A., Dronskowski R., Schneider J.M. Ab initio study of ductility in M2AlC (M = Ti, V, Cr). Phys. Rev. B, 2007, 75, 174102.
34. Anderson O.L. A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids, 1963, 24, P. 909–917.
35. Anderson O.L. The high-temperature acoustic Gruneisen parameter in the earth’s interior. ¨ Physics of the Earth and Planetary Interiors, 1979, 18, P. 221–231.
36. Vitos L. Computational quantum mechanics for materials engineers: the EMTO method and applications. Springer, London, 2007, 236 p.
37. Kerley G.I. Equations of state for titanium and Ti6A14V alloy. Sandia National Lab., Oak Ridge, 2003, 35 p.
38. Leont’ev K.L. On the relationship between elastic and thermal properties of substances. Sov. Phys. Acoust., 1981, 27, P. 309–316.
39. Belomestnykh V.N. The acoustical Gruneisen constants of solids. ¨ Tech. Phys. Lett., 2004, 30 (2), P. 91–93.
40. Kittel C. Introduction to solid state physics, 8th ed. John Wiley & Sons, Hoboken, 2005, 681 p.
41. Shinde S.L., Goela J.S. ´ High thermal conductivity materials. Springer, New York, 2006, 271 p.
42. Hoel H., Nyberg H. An extension of Clarke’s model with stochastic amplitude flip processes. IEEE Trans. Commun., 2014, 62 (7), P. 2378–2389.
43. Clarke D.R., Levi C.G. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res., 2003, 33, P. 383–417.
44. Cahill D.G., Watson S.K., Pohl R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 1992, 46 (10), P. 6131–6140.
45. Duan Y.H., Sun Y., Lu L. Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al–Pt–Ti system. Comput. Mater. Sci., 2013, 68, P. 229–233.
Review
For citations:
Kasparyan S.O., Ordabaev A.E., Bakulin A.V., Kulkova S.E. Elastic and thermal properties of some ternary β-Ti based alloys. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):225-234. https://doi.org/10.17586/2220-8054-2025-16-2-225-234