Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Bioavailability of nanoemulsions modified with curcumin and cerium dioxide nanoparticles

https://doi.org/10.17586/2220-8054-2023-14-1-89-97

Abstract

In this work, the physicochemical properties and biological activity of nanoemulsions prepared from paraffin oil and stabilized by nonionic surfactants as carriers of curcumin and cerium dioxide nanoparticles were studied. An analysis of the results showed that curcumin was incorporated into the oil droplets while cerium dioxide nanoparticles were adsorbed on the surface of oil droplets. The nanoemulsion droplet size did not exceed 100 nm. The absence of toxicity to mouse embryonic fibroblasts in vitro and after a single intraperitoneal injection to mice in vivo makes the nanoemulsions promising drug carriers for advanced biomedical applications.

About the Authors

A. D. Shirokikh
Mendeleev University of Chemical Technology
Russian Federation

Anastasiya D. Shirokikh, Department of Nanomaterials and Nanotechnology,

9, Miusskaya sq., Moscow, 125047. 



V. A. Anikina
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Viktoriia A. Anikina,

Institutskaya str., 3, Pushchino, 142290. 



E. A. Zamyatina
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Elizaveta A. Zamyatina,

Institutskaya str., 3, Pushchino, 142290.



E. V. Mishchenko
Mendeleev University of Chemical Technology
Russian Federation

Ekaterina V. Mishchenko, Department of Nanomaterials and Nanotechnology,

Miusskaya sq., 9, Moscow, 125047.



M. Yu. Koroleva
Mendeleev University of Chemical Technology
Russian Federation

Marina Y. Koroleva, Department of Nanomaterials and Nanotechnology,

Miusskaya sq., 9, Moscow, 125047.



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Vladimir K. Ivanov,

Leninskiy prosp., 31, Moscow, 119991.



N. R. Popova
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Nelli R. Popova,

Institutskaya str., 3, Pushchino, 142290.



References

1. Fitzmaurice S.D., Sivamani R.K., Isseroff R.R. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol. Physiol., 2011, 24(3), P. 113–126.

2. Thomas L., Zakir F., M. Mirza A., Anwer M.K., Ahmad F.J., Iqbal Z. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: in vitro, ex vivo evaluation and in vivo wound healing studies. Int. J. Biol. Macromol., 2017, 101, P. 569–579.

3. Lizonova D., Hladek F., Chvila S., Balaz A., Stankova S., Stepanek F. Surface stabilization determines macrophage uptake, cytotoxicity, and bioactivity of curcumin nanocrystals. Int. J. Pharm., 2022, 626, P. 122133.

4. Ahsan H., Hadi S.M. Strand scission in DNA induced by curcumin in the presence of Cu (II). Cancer letters, 1998, 124(1), P. 23–30.

5. Legonkova O.A., Korotaeva A.I., Terekhova R.P., Asanova L.Y., Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Krasnova E.V., Shekunova T.O., Ivanov V.K. Method for producing a biologically active composite based on nanocrystalline cerium dioxide and curcumin. Patent 2665378. Russia: MPK A61K 31/05. 2017134450, 2018.08.29.

6. Xue Y., Luan Q., Yang D., Yao X., Zhou K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C, 2011, 115, P. 4433–4438.

7. Yuao Wu, Hang T Ta. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J. Mater. Chem., 2021, 9(36), P. 7291–7301.

8. Plakhova T., Romanchuk A., Butorin S., Konyukhova A., Egorov A., Shiryaev A., Baranchikov A., Dorovatovskii P., Huthwelker T., Gerber E., Bauters S., Sozarukova M., Scheinost A., Ivanov V., Kalmykov S., Kvashnina K. Towards the surface hydroxyl species in CeO2 nanoparticles. Nanoscale, 2019, 11(39), P. 18142–18149.

9. Popova N.R., Shekunova T.O., Popov A.L., Selezneva I.I., Ivanov V.K. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(5), P. 564–572.10.

10. Barker E., Shepherd J., Ortega Asencia I. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules, 2022, 27(9), P. 2678.

11. Popov A.L., Andreeva V.V., Khohlov N.V., Kamenskikh K.A., Gavrilyuk V.B., Ivanov V.K. Comprehensive cytotoxicity analysis of polysaccharide hydrogel modified with cerium oxide nanoparticles for wound healing application. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(3), P. 329–335.

12. Singh H., Bashir S.M., Purohit S.D., Bhaskar R., Rather M.A., Ali S.I., Yadav I., Makhdoomi D.M., Din Dar M.U., Gani M.A., Gupta M.K., Mishra N.C. Nanoceria laden decellularized extracellular matrix-based curcumin releasing nanoemulgel system for full-thickness wound healing. Biomaterials Advances, 2022, 137, P. 212806.

13. Yu H., Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of agricultural and food chemistry, 2012, 60(21), P. 5373–5379.

14. Ahmad N., Ahmad R., Al-Qudaihi A., Alaseel S.E., Fita I.Z., Khalid M.S., Pottoo F.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC advances, 2019, 9(35), P. 20192–20206.

15. Solans C., Sole I. Nanoemulsions: formation by low-energy methods.´ Curr. Opin. Colloid Interface Sci., 2012, 17(5), P. 246–254.

16. Thakkar H.P., Khunt A., Dhande R.D., Patel A.A. Formulation and evaluation of Itraconazole nanoemulsion for enhanced oral bioavailability. J. Microencapsulation, 2015, 32, P. 559–569.

17. Ivanova O.S., Shekunova T.O., Ivanov V.K., Shcherbakov A.B., Popov A.L., Davydova G.A., Selezneva I.I., Kopitsa G.P., Tret’yakov, Y.D. One-stage synthesis of ceria colloid solutions for biomedical use. Dokl. Chem., 2011, 437(2), P. 103–106.

18. Izquierdo P., Esquena J., Tadros Th.F., Dederen C., Garcia M. J., Azemar N., Solans C. Formation and stability of nanoemulsions prepared using the phase inversion temperature method. Langmuir, 2002, 18, P. 26–30.

19. Koroleva M., Nagovitsina T., Yurtov E. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Physical Chemistry Chemical Physics journal, 2018, 20(15), P. 10369–10377

20. Koroleva M., Nagovitsina T., Yurtov E. Properties of nanocapsules obtained from oil-in-water nanoemulsions. Mendeleev Communications, 2015, 25, P. 389–390.

21. Mun S., McClements D.J. Influence of Interfacial Characteristics on Ostwald Ripening in Hydrocarbon Oil-in-Water Emulsions. Langmuir, 2006, 22, P. 1551.

22. Lomanova N.A., Tomkovich M.V., Pleshakov I.V., Volkov M.P., Gusarov V.V., Danilovich D.P., Osipov A.V., Panchuk V.V., Semenov V.G. Magnetic characteristics of nanocrystalline bifeo3-based materials prepared by solution combustion synthesis. Inorganic Materials, 2020, 56(12), P. 1271–1277.

23. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.S., Gusarov V.V. Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3. Russian Journal of Inorganic Chemistry, 2021, 66(2), P. 163–169.

24. Bigall N.C., Rodio M., Avugadda S., Leal M.P., Di Corato R., Conteh J.S., Intartaglia R., Pellegrino T. Scaling Up Magnetic Nanobead Synthesis with Improved Stability for Biomedical Applications. J. Phys. Chem. A, 2022, 26(51), P. 9605–9617.

25. Chevalier Y., Bolzinger M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A, 2013, 439, P. 23–34.

26. Koroleva M., Yurtov E. Pickering emulsions stabilized with magnetite, gold, and silica nanoparticles: Mathematical modeling and experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, P. 125001.

27. Chen B.H., Inbaraj B.S. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Critical Reviews in Biotechnology, 2018, 38(7), P. 1003–1024.

28. Celardo I., Traversa E., Ghibelli L. Cerium oxide nanoparticles: a promise for applications in therapy. Journal of Experimental Therapeutics and Oncology, 2011, 9(1), P. 47–51.


Review

For citations:


Shirokikh A.D., Anikina V.A., Zamyatina E.A., Mishchenko E.V., Koroleva M.Yu., Ivanov V.K., Popova N.R. Bioavailability of nanoemulsions modified with curcumin and cerium dioxide nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):89-97. https://doi.org/10.17586/2220-8054-2023-14-1-89-97

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)