Биодоступность наноэмульсий, модифицированных куркумином и наночастицами диоксида церия
https://doi.org/10.17586/2220-8054-2023-14-1-89-97
Аннотация
В работе изучены физико-химические свойства и биологическая эффективность наноэмульсий с углеводородным маслом, стабилизированных неионогенными поверхностно-активными веществами, как носителей активных веществ - куркумина и наночастиц диоксида церия. Анализ физико-химических свойств показал, что куркумин встраивается в структуру масляных капель, а наночастицы диоксида церия адсорбируются на их поверхности. Размер капель наноэмульсий не превышал 100 нм. Отсутствие токсичности в отношении эмбриональных фибробластов мыши in vitro и после однократного внутрибрюшинного введения мышам in vivo делает их перспективными носителями лекарственных средств различного биологического назначения.
Об авторах
А. Д. ШирокихРоссия
Москва.
В. А. Аникина
Россия
Москва.
Е. А. Замятина
Россия
Москва.
Е. В. Мищенко
Россия
Москва.
М. Ю. Королева
Россия
Москва.
В. К. Иванов
Россия
Москва.
Н. Р. Попова
Россия
Москва.
Список литературы
1. Fitzmaurice S.D., Sivamani R.K., Isseroff R.R. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol. Physiol., 2011, 24(3), P. 113–126.
2. Thomas L., Zakir F., M. Mirza A., Anwer M.K., Ahmad F.J., Iqbal Z. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: in vitro, ex vivo evaluation and in vivo wound healing studies. Int. J. Biol. Macromol., 2017, 101, P. 569–579.
3. Lizonova D., Hladek F., Chvila S., Balaz A., Stankova S., Stepanek F. Surface stabilization determines macrophage uptake, cytotoxicity, and bioactivity of curcumin nanocrystals. Int. J. Pharm., 2022, 626, P. 122133.
4. Ahsan H., Hadi S.M. Strand scission in DNA induced by curcumin in the presence of Cu (II). Cancer letters, 1998, 124(1), P. 23–30.
5. Legonkova O.A., Korotaeva A.I., Terekhova R.P., Asanova L.Y., Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Krasnova E.V., Shekunova T.O., Ivanov V.K. Method for producing a biologically active composite based on nanocrystalline cerium dioxide and curcumin. Patent 2665378. Russia: MPK A61K 31/05. 2017134450, 2018.08.29.
6. Xue Y., Luan Q., Yang D., Yao X., Zhou K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C, 2011, 115, P. 4433–4438.
7. Yuao Wu, Hang T Ta. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J. Mater. Chem., 2021, 9(36), P. 7291–7301.
8. Plakhova T., Romanchuk A., Butorin S., Konyukhova A., Egorov A., Shiryaev A., Baranchikov A., Dorovatovskii P., Huthwelker T., Gerber E., Bauters S., Sozarukova M., Scheinost A., Ivanov V., Kalmykov S., Kvashnina K. Towards the surface hydroxyl species in CeO2 nanoparticles. Nanoscale, 2019, 11(39), P. 18142–18149.
9. Popova N.R., Shekunova T.O., Popov A.L., Selezneva I.I., Ivanov V.K. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(5), P. 564–572.10.
10. Barker E., Shepherd J., Ortega Asencia I. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules, 2022, 27(9), P. 2678.
11. Popov A.L., Andreeva V.V., Khohlov N.V., Kamenskikh K.A., Gavrilyuk V.B., Ivanov V.K. Comprehensive cytotoxicity analysis of polysaccharide hydrogel modified with cerium oxide nanoparticles for wound healing application. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(3), P. 329–335.
12. Singh H., Bashir S.M., Purohit S.D., Bhaskar R., Rather M.A., Ali S.I., Yadav I., Makhdoomi D.M., Din Dar M.U., Gani M.A., Gupta M.K., Mishra N.C. Nanoceria laden decellularized extracellular matrix-based curcumin releasing nanoemulgel system for full-thickness wound healing. Biomaterials Advances, 2022, 137, P. 212806.
13. Yu H., Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of agricultural and food chemistry, 2012, 60(21), P. 5373–5379.
14. Ahmad N., Ahmad R., Al-Qudaihi A., Alaseel S.E., Fita I.Z., Khalid M.S., Pottoo F.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC advances, 2019, 9(35), P. 20192–20206.
15. Solans C., Sole I. Nanoemulsions: formation by low-energy methods.´ Curr. Opin. Colloid Interface Sci., 2012, 17(5), P. 246–254.
16. Thakkar H.P., Khunt A., Dhande R.D., Patel A.A. Formulation and evaluation of Itraconazole nanoemulsion for enhanced oral bioavailability. J. Microencapsulation, 2015, 32, P. 559–569.
17. Ivanova O.S., Shekunova T.O., Ivanov V.K., Shcherbakov A.B., Popov A.L., Davydova G.A., Selezneva I.I., Kopitsa G.P., Tret’yakov, Y.D. One-stage synthesis of ceria colloid solutions for biomedical use. Dokl. Chem., 2011, 437(2), P. 103–106.
18. Izquierdo P., Esquena J., Tadros Th.F., Dederen C., Garcia M. J., Azemar N., Solans C. Formation and stability of nanoemulsions prepared using the phase inversion temperature method. Langmuir, 2002, 18, P. 26–30.
19. Koroleva M., Nagovitsina T., Yurtov E. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Physical Chemistry Chemical Physics journal, 2018, 20(15), P. 10369–10377
20. Koroleva M., Nagovitsina T., Yurtov E. Properties of nanocapsules obtained from oil-in-water nanoemulsions. Mendeleev Communications, 2015, 25, P. 389–390.
21. Mun S., McClements D.J. Influence of Interfacial Characteristics on Ostwald Ripening in Hydrocarbon Oil-in-Water Emulsions. Langmuir, 2006, 22, P. 1551.
22. Lomanova N.A., Tomkovich M.V., Pleshakov I.V., Volkov M.P., Gusarov V.V., Danilovich D.P., Osipov A.V., Panchuk V.V., Semenov V.G. Magnetic characteristics of nanocrystalline bifeo3-based materials prepared by solution combustion synthesis. Inorganic Materials, 2020, 56(12), P. 1271–1277.
23. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.S., Gusarov V.V. Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3. Russian Journal of Inorganic Chemistry, 2021, 66(2), P. 163–169.
24. Bigall N.C., Rodio M., Avugadda S., Leal M.P., Di Corato R., Conteh J.S., Intartaglia R., Pellegrino T. Scaling Up Magnetic Nanobead Synthesis with Improved Stability for Biomedical Applications. J. Phys. Chem. A, 2022, 26(51), P. 9605–9617.
25. Chevalier Y., Bolzinger M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A, 2013, 439, P. 23–34.
26. Koroleva M., Yurtov E. Pickering emulsions stabilized with magnetite, gold, and silica nanoparticles: Mathematical modeling and experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, P. 125001.
27. Chen B.H., Inbaraj B.S. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Critical Reviews in Biotechnology, 2018, 38(7), P. 1003–1024.
28. Celardo I., Traversa E., Ghibelli L. Cerium oxide nanoparticles: a promise for applications in therapy. Journal of Experimental Therapeutics and Oncology, 2011, 9(1), P. 47–51.
Рецензия
Для цитирования:
Широких А.Д., Аникина В.А., Замятина Е.А., Мищенко Е.В., Королева М.Ю., Иванов В.К., Попова Н.Р. Биодоступность наноэмульсий, модифицированных куркумином и наночастицами диоксида церия. Наносистемы: физика, химия, математика. 2023;14(1):89-97. https://doi.org/10.17586/2220-8054-2023-14-1-89-97
For citation:
Shirokikh A.D., Anikina V.A., Zamyatina E.A., Mishchenko E.V., Koroleva M.Yu., Ivanov V.K., Popova N.R. Bioavailability of nanoemulsions modified with curcumin and cerium dioxide nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):89-97. https://doi.org/10.17586/2220-8054-2023-14-1-89-97