Conducting properties of single-wall carbon nanotubes in composites based on polystyrene
https://doi.org/10.17586/2220-8054-2025-16-2-243-249
Abstract
Composite films were synthesized by radical copolymerization of styrene with methacrylate groups on the surface of modified single-walled carbon nanotubes. Mechanical grinding and reforming of films on the electrode led to a decrease in the electrical resistance values by two magnitude orders. This effect was observed when measuring the current-voltage characteristics in both sandwich and planar structures. This decrease in the electrical resistance of the composite films is likely due to the disintegration and reorientation of carbon nanotubes, as well as the creation of mechanical stresses in them as a result of covalent bonding to the polymer matrix, which could affect the electronic structure of carbon inclusions.
Keywords
About the Authors
M. N. NikolaevaRussian Federation
Marianna N. Nikolaeva
Bolshoy pr. 31, 199004 St. Petersburg
E. M. Ivan’kova
Russian Federation
Elena M. Ivan’kova
Bolshoy pr. 31, 199004 St. Petersburg
A. N. Bugrov
Russian Federation
Alexander N. Bugrov
Bolshoy pr. 31, 199004 St. Petersburg
Professora Popova 5, 197376 St. Petersburg
References
1. Badamshina E.R., Gafurova M.P., Estrin Ya.I. Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Russian Chemical Reviews, 2010, 79 (11), P. 945–979.
2. Kamalov A.M., Kodolova-Chukhontseva V.V., Dresvyanina E.N., Maslennikova T.P., Dobrovolskaya I.P., Ivan’kova E.M., Popova E.N., Smirnova V.E., Yudin V.E. Effect of nanotubes on the electrical and mechanical properties of chitosan films. Technical Physics, 2022, 3, P. 340–346.
3. Lee D.K., Yoo J., Kim H., Kang B.H., Park S.H. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. Materials (Basel), 2022, 15 (4), 1356.
4. Castellino M., Rovere M., Shahzad M.I., Tagliaferro A. Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Composites Part A: Applied Science and Manufacturinghttps, 2016, 87, P. 237–242.
5. Sanchez-Romate X.F., Jim ´ enez-Su ´ arez A., Ure ´ na A. Electrical Properties of Carbon Nanotubes. In: Abraham J., Thomas S., Kalarikkal N. (eds) ˜ Handbook of Carbon Nanotubes. Springer, 2022.
6. Cees Dekker. How we made the carbon nanotube transistor. Nature electronics, 2018, 1, 518.
7. Rakov E.G. Carbon nanotubes in new materials. Russian Chemical Reviews, 2013, 82 (1), P. 27–47.
8. Stando G., Han S., Kumanek B., Łukowiec D., Janas D. Tuning wettability and electrical conductivity of single-walled carbon nanotubes by the modified Hummers method. Sci. Rep., 2022, 12, 4358.
9. Rdest M., Janas D. Enhancing Electrical Conductivity of Composites of Single-Walled Carbon Nanotubes and Ethyl Cellulose with Water Vapor. Materials, 2020, 13 (24), 5764.
10. Abdulhameed A., Wahab N.Z.A., Mohtar M.N. Hamidon M.N., Shafie S., Halin I.A. Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater., 2021, 50, P. 3207–3221.
11. Charoenpakdee J., Suntijitrungruang O., Boonchui S. Chirality effects on an electron transport in single-walled carbon nanotube. Sci. Rep., 2020, 10 (1), 18949.
12. Sekitani T., Noguchi Y., Hata K., Fukushima T., Aida T., Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321, P. 1468–1472
13. Yoon H., Yamashita M., Ata S., Futaba D.N, Yamada T., Hata K.. Controlling exfoliation in order to minimize damage during dispersion of long SWCNT for advanced composites. Sci. Rep., 2014, 4, 3907.
14. Kumanek B., Wasiak T., Stando G., Stando P., Łukowiec D., Janas D. Simple method to improve electrical conductivity of films made from single-walled carbon nanotubes. Nanomaterials, 2019, 9 (8), 1113.
15. Elaskalany M., Behdinan K. Effect of carbon nanotube type and length on the electrical conductivity of carbon nanotube polymer nanocomposites. Mater. Res. Express, 2023, 10 (10), 105010.
16. In-Yup J., Wook C.D., Ashok K.N., Jong-Beom B. Functionalization of carbon nanotubes. Carbon nanotubes – polymer nanocomposites. 2011, Edited by S.Y. Rijeka, Croatia: Intech., P. 91–110.
17. Mann F.A., Galonska P., Herrmann N., Kruss S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat. Protoc., 2022, 17, P. 727–747.
18. Manoharan G., Bosel P., Thien J., Holtmannsp ¨ otter M., Meingast L., Schmidt M., Eickmeier H., Haase M., Maultzsch J., Steinhart M., Wollschl ¨ ager ¨ J., Palma M., Meyer C. Click-Functionalization of silanized carbon nanotubes: From inorganic heterostructures to biosensing nanohybrids. Molecules, 2023, 28 (5), 2161.
19. Hamon M., Hui H., Bhowmik P., Itkis H.M.E., Haddon R.C. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys. A, 2002, 74, P. 333–338.
20. D´ıez-Pascual A.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview. Macromol., 2021, 1 (2), P. 64–83.
21. Roch A., Greifzu M., Roch Talens, E., Stepien, L., Roch T., Hege J., Van Nong N., Schmiel T., Dani I., Leyens C., Jost O., Leson A. Ambient effects on the electrical conductivity of carbon nanotubes. Carbon, 2015, 95, P. 347–353.
22. Yeontack R., Yin L., Yu C. Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and holedoping with chlorosulfonic acid. J. of Materials Chemistry, 2012, 10 (14).
23. Ferrier M., Kasumov A., Deblock R., Gueron S., Bouchiat H., Junji Haruyama. Superconductivity in carbon nanotubes, disorder-induced super- ´ conductivity in ropes of carbon nanotubes. In: Carbon Nanotubes, 2009, 10 (4), P. 252–267.
24. Yang Y., Fedorov G., Zhang J., Tselev A., Shafranjuk S., Barbara P. The search for superconductivity at van Hove singularities in carbon nanotubes. Superconductor Science and Technology, 2012, 25 (12).
25. Ionov A.N. Josephson-Like behaviour of the current-voltage characteristics of multi-graphene flakes embedded in polystyrene. J. Low Temp. Phys., 2016, 185 (5–6), P. 515–521.
26. Ionov A.N., Volkov M.P., Nikolaeva M.N., Smyslov R.Y. Bugrov A.N. The magnetization of a composite based on reduced graphene oxide and polystyrene. Nanomaterials, 2021, 11 (2), 403.
27. Ionov A.N., Volkov M.P. Magnetization of needle graphene embedded in polystyrene matrix. Tech. Phys. Lett., 2022, 48 (8), P. 44–46.
28. Nikolaeva M.N., Anan’eva T.D., Bugrov A.N., Dideikin A.T., Ivankova E.M. Correlation between structure and resistance of composites based on polystyrene and multilayered graphene oxide. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (2), P. 266–271.
29. Nawaz M.A.H, Rauf S., Catanante G., Nawaz M.H., Nunes G., Marty J.L., Hayat A. One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors, 2016, 16 (10), 1651.
30. Ionov A.N., Volkov M.P. Nikolaeva M.N., Smyslov R.Y, Bugrov A.N. Magnetization of ultraviolet-reduced graphene oxide flakes in composites based on polystyrene. Materials, 2021, 14 (10), 2519.
31. Melgoza M.L., Ram´ırez-Bon R. Europium ions as a spectroscopic probe in the study of PMMA-SiO2 hybrid microstructure with variable coupling agent. J. of Sol-Gel Science and Technology, 2021, 107 (10), P. 46–56.
32. Bugrov A.N., Zavialova A.Y., Smyslov R.Y., Anan’eva T.D., Vlasova E.N., Mokeev M.V., Kryukov A.E., Kopitsa G.P., Pipich V. Luminescence of Eu3+ ions in hybrid polymer- inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, 33 (5), P. 837–849.
33. Nikolaeva M.N., Bugrov A.N., Anan’eva T.D. Gushchina E.V., Dunaevskii M.S., Dideikin A.T. Resistance of reduced graphene oxide on polystyrene surface. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (4), P. 496–499.
Review
For citations:
Nikolaeva M.N., Ivan’kova E.M., Bugrov A.N. Conducting properties of single-wall carbon nanotubes in composites based on polystyrene. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):243-249. https://doi.org/10.17586/2220-8054-2025-16-2-243-249