Проводящие свойства одностенных углеродных нанотрубок в композитах на основе полистирола
https://doi.org/10.17586/2220-8054-2025-16-2-243-249
Аннотация
Композитные пленки синтезированы методом радикальной сополимеризации стирола с метакрилатными группами на поверхности модифицированных одностенных углеродных нанотрубок. Их механическое измельчение и переформовка на поверхности электродов привели к снижению значений сопротивления отдельных участков поверхности на 2 порядка. Данный эффект наблюдался при измерении вольт-амперных характеристик как сэндвич-, так и планарных металл/полимерный композит/металл структур. Такое снижение сопротивления локальных участков композитных пленок, вероятно, связано с измельчением и переориентацией углеродных нанотрубок, а также изменением механических напряжений между ними и полимерной матрицей в ходе проделанных манипуляций, что могло повлиять на электронную структуру включений углеродных нанотрубок.
Ключевые слова
Об авторах
М. Н. НиколаеваРоссия
Е. М. Иванькова
Россия
А. Н. Бугров
Россия
Список литературы
1. Badamshina E.R., Gafurova M.P., Estrin Ya.I. Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Russian Chemical Reviews, 2010, 79 (11), P. 945–979.
2. Kamalov A.M., Kodolova-Chukhontseva V.V., Dresvyanina E.N., Maslennikova T.P., Dobrovolskaya I.P., Ivan’kova E.M., Popova E.N., Smirnova V.E., Yudin V.E. Effect of nanotubes on the electrical and mechanical properties of chitosan films. Technical Physics, 2022, 3, P. 340–346.
3. Lee D.K., Yoo J., Kim H., Kang B.H., Park S.H. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. Materials (Basel), 2022, 15 (4), 1356.
4. Castellino M., Rovere M., Shahzad M.I., Tagliaferro A. Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Composites Part A: Applied Science and Manufacturinghttps, 2016, 87, P. 237–242.
5. Sanchez-Romate X.F., Jim ´ enez-Su ´ arez A., Ure ´ na A. Electrical Properties of Carbon Nanotubes. In: Abraham J., Thomas S., Kalarikkal N. (eds) ˜ Handbook of Carbon Nanotubes. Springer, 2022.
6. Cees Dekker. How we made the carbon nanotube transistor. Nature electronics, 2018, 1, 518.
7. Rakov E.G. Carbon nanotubes in new materials. Russian Chemical Reviews, 2013, 82 (1), P. 27–47.
8. Stando G., Han S., Kumanek B., Łukowiec D., Janas D. Tuning wettability and electrical conductivity of single-walled carbon nanotubes by the modified Hummers method. Sci. Rep., 2022, 12, 4358.
9. Rdest M., Janas D. Enhancing Electrical Conductivity of Composites of Single-Walled Carbon Nanotubes and Ethyl Cellulose with Water Vapor. Materials, 2020, 13 (24), 5764.
10. Abdulhameed A., Wahab N.Z.A., Mohtar M.N. Hamidon M.N., Shafie S., Halin I.A. Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater., 2021, 50, P. 3207–3221.
11. Charoenpakdee J., Suntijitrungruang O., Boonchui S. Chirality effects on an electron transport in single-walled carbon nanotube. Sci. Rep., 2020, 10 (1), 18949.
12. Sekitani T., Noguchi Y., Hata K., Fukushima T., Aida T., Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321, P. 1468–1472
13. Yoon H., Yamashita M., Ata S., Futaba D.N, Yamada T., Hata K.. Controlling exfoliation in order to minimize damage during dispersion of long SWCNT for advanced composites. Sci. Rep., 2014, 4, 3907.
14. Kumanek B., Wasiak T., Stando G., Stando P., Łukowiec D., Janas D. Simple method to improve electrical conductivity of films made from single-walled carbon nanotubes. Nanomaterials, 2019, 9 (8), 1113.
15. Elaskalany M., Behdinan K. Effect of carbon nanotube type and length on the electrical conductivity of carbon nanotube polymer nanocomposites. Mater. Res. Express, 2023, 10 (10), 105010.
16. In-Yup J., Wook C.D., Ashok K.N., Jong-Beom B. Functionalization of carbon nanotubes. Carbon nanotubes – polymer nanocomposites. 2011, Edited by S.Y. Rijeka, Croatia: Intech., P. 91–110.
17. Mann F.A., Galonska P., Herrmann N., Kruss S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat. Protoc., 2022, 17, P. 727–747.
18. Manoharan G., Bosel P., Thien J., Holtmannsp ¨ otter M., Meingast L., Schmidt M., Eickmeier H., Haase M., Maultzsch J., Steinhart M., Wollschl ¨ ager ¨ J., Palma M., Meyer C. Click-Functionalization of silanized carbon nanotubes: From inorganic heterostructures to biosensing nanohybrids. Molecules, 2023, 28 (5), 2161.
19. Hamon M., Hui H., Bhowmik P., Itkis H.M.E., Haddon R.C. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys. A, 2002, 74, P. 333–338.
20. D´ıez-Pascual A.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview. Macromol., 2021, 1 (2), P. 64–83.
21. Roch A., Greifzu M., Roch Talens, E., Stepien, L., Roch T., Hege J., Van Nong N., Schmiel T., Dani I., Leyens C., Jost O., Leson A. Ambient effects on the electrical conductivity of carbon nanotubes. Carbon, 2015, 95, P. 347–353.
22. Yeontack R., Yin L., Yu C. Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and holedoping with chlorosulfonic acid. J. of Materials Chemistry, 2012, 10 (14).
23. Ferrier M., Kasumov A., Deblock R., Gueron S., Bouchiat H., Junji Haruyama. Superconductivity in carbon nanotubes, disorder-induced super- ´ conductivity in ropes of carbon nanotubes. In: Carbon Nanotubes, 2009, 10 (4), P. 252–267.
24. Yang Y., Fedorov G., Zhang J., Tselev A., Shafranjuk S., Barbara P. The search for superconductivity at van Hove singularities in carbon nanotubes. Superconductor Science and Technology, 2012, 25 (12).
25. Ionov A.N. Josephson-Like behaviour of the current-voltage characteristics of multi-graphene flakes embedded in polystyrene. J. Low Temp. Phys., 2016, 185 (5–6), P. 515–521.
26. Ionov A.N., Volkov M.P., Nikolaeva M.N., Smyslov R.Y. Bugrov A.N. The magnetization of a composite based on reduced graphene oxide and polystyrene. Nanomaterials, 2021, 11 (2), 403.
27. Ionov A.N., Volkov M.P. Magnetization of needle graphene embedded in polystyrene matrix. Tech. Phys. Lett., 2022, 48 (8), P. 44–46.
28. Nikolaeva M.N., Anan’eva T.D., Bugrov A.N., Dideikin A.T., Ivankova E.M. Correlation between structure and resistance of composites based on polystyrene and multilayered graphene oxide. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (2), P. 266–271.
29. Nawaz M.A.H, Rauf S., Catanante G., Nawaz M.H., Nunes G., Marty J.L., Hayat A. One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors, 2016, 16 (10), 1651.
30. Ionov A.N., Volkov M.P. Nikolaeva M.N., Smyslov R.Y, Bugrov A.N. Magnetization of ultraviolet-reduced graphene oxide flakes in composites based on polystyrene. Materials, 2021, 14 (10), 2519.
31. Melgoza M.L., Ram´ırez-Bon R. Europium ions as a spectroscopic probe in the study of PMMA-SiO2 hybrid microstructure with variable coupling agent. J. of Sol-Gel Science and Technology, 2021, 107 (10), P. 46–56.
32. Bugrov A.N., Zavialova A.Y., Smyslov R.Y., Anan’eva T.D., Vlasova E.N., Mokeev M.V., Kryukov A.E., Kopitsa G.P., Pipich V. Luminescence of Eu3+ ions in hybrid polymer- inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, 33 (5), P. 837–849.
33. Nikolaeva M.N., Bugrov A.N., Anan’eva T.D. Gushchina E.V., Dunaevskii M.S., Dideikin A.T. Resistance of reduced graphene oxide on polystyrene surface. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (4), P. 496–499.
Рецензия
Для цитирования:
Николаева М.Н., Иванькова Е.М., Бугров А.Н. Проводящие свойства одностенных углеродных нанотрубок в композитах на основе полистирола. Наносистемы: физика, химия, математика. 2025;16(2):243-249. https://doi.org/10.17586/2220-8054-2025-16-2-243-249
For citation:
Nikolaeva M.N., Ivan’kova E.M., Bugrov A.N. Conducting properties of single-wall carbon nanotubes in composites based on polystyrene. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):243-249. https://doi.org/10.17586/2220-8054-2025-16-2-243-249