Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Photocatalytic properties of composites based on Y1-xBixFeO3 (0≤x≤0.15) nanocrystalline solid solutions with a hexagonal structure

https://doi.org/10.17586/2220-8054-2022-13-1-87-95

Abstract

Nanopowders of Y(1-x)Bi(x)FeO3 ( x = 0, 0.05, 0.10, 0.15) solid solutions were obtained by coprecipitation of hydroxides with simultaneous sonication and subsequent thermal treatment of the precipitate in air at 800 ◦C for 1 min. in the annealing-quenching mode. The results of X-ray phase analysis showed the formation of nanocrystalline solid solutions with a structure of hexagonal yttrium orthoferrite. The average crystallite size increases from 4 to 10 nm with the increasing bismuth content in the solid solution. The influence - of Y3+ substitution for Bi3+ in yttrium orthoferrite on the photocatalytic activity of Y1 x Bi x FeO3 nanopowders during the Fenton-like degradation of methyl violet under the visible light irradiation has been studied. The maximum reaction rate constant of 0.0197 min - 1 was shown by the YFeO3 nanopowder, which has the smallest crystallite size of ∼4 nm.

About the Authors

A. N. Sokolova
St. Petersburg State Institute of Technology; Ioffe Institute
Russian Federation


O. V. Proskurina
St. Petersburg State Institute of Technology; Ioffe Institute
Russian Federation


D. P. Danilovich
St. Petersburg State Institute of Technology
Russian Federation


V. V. Gusarov
Ioffe Institute
Russian Federation


References

1. Ahmad T., Lone I.H., Ansari S.G., Ahmed J., Ahamad T., Alshehri S.M. Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Materials and Design, 2017, 126, P. 331-338.

2. Shang M., Zhang C., Zhang T., Yuan L., Ge L., Yuan H., Feng S. The multiferroic perovskite YFeO3. Applied physics letters, 2013, 102(6), P. 062903.

3. Cheong S.W., Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 2007, 6(1), P. 13-20.

4. Zhang R., Wang X., Yu C., Liu J, Yao J., Kang X., Xing X., Xiong S. Preparation of Multiferroic YFeO3 Nanofibers and the Photocatalytic Activity under Visible Irradiation.Integrated Ferroelectrics, 2020, 206(1), P. 105-111.

5. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskiy V.N., Gusarov V.V. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. Journal of Materials Science: Materials in Electronics, 2017, 28(10), P. 7163-7170.

6. Ismael M., Elhaddad E., Taffa D.H., Wark M. Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst. Catalysts, 2017, 7(11), P. 326-338.

7. Popkov V.I., Almjasheva O.V., Gusarov V.V. The Investigation of the Structure Control Possibility of Nanocrystalline Yttrium Orthoferrite in Its Synthesis from Amorphous Powders.Russian Journal of Applied Chemistry, 2014, 87(10), P. 1417-1421.

8. Popkov V.I., Almjasheva O.V., Panchuk V.V., Semenov V.G., Gusarov V.V. The Role of Pre-Nucleus States in Formation of Nanocrystalline Yttrium Orthoferrite. Doklady Chemistry, 2016, 471(2), P. 356-359.

9. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Panchuk V.V., Semenov V.G., Gusarov V.V. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceramics International, 2018, 44(17), P. 20906-20912.

10. Li Y., Ma Y., Iiu W., Wang Z., Liu H., Wang X., Wei H., Zeng S., Cheng G.J. A promising inorganic YFeO3 pigments with high near-infrared reflectance and infrared emission. Solar Energy, 2021, 226(3), P. 180-191.

11. Sui Y., Lu F., Liu X., Zhang Y., Sun X., Liu C. A novel hexagonal YFeO3 3D nanomaterial with room temperature ferromagnetic properties prepared by self-assembling method. Results in Materials, 2021, 10(2), P. 100186.

12. Wu L., Yu J.C., Zhang L., Wang X., Li S. Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. Journal of Solid State Chemistry, 2004, 177(10), P. 3666-3674.

13. Zhang R.-L., Chen C.-L., Jin K.-X., Niu L.-W., Xing H., Luo B.-c. Dielectric behavior of hexagonal and orthorhombic YFeO3 prepared by modified sol-gel method. Journal of Electroceramics, 2014, 32(2-3), P. 187-191.

14. Shen H., Xu J., Jin M., Jiang G. Influence of manganese on the structure and magnetic properties of YFeO3 nanocrystal. Ceramics International, 2012, 38(2), P. 1473-1477.

15. Lomanova N.A., Tomkovich M.V., Danilovich D.P., Osipov A.V., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic Characteristics of Nanocrystalline BiFeO3-Based Materials Prepared by Solution Combustion Synthesis. Inorganic Materials, 2020, 56(12), P. 1271-1277.

16. Maleki H., Zakeri M., Fathi R. Experimental study of the effect of yttrium on the structural, thermal, and magnetic properties of BiFeO3. Applied Physics A, 2018, 124(11), 728.

17. Medina L.M.S., Jorge G.A., Negri R.M. Structural, dielectric and magnetic properties of Bi1-xYxFeO3 (0 ≤ x ≤ 0.2) obtained by acid-base co-precipitation. Journal of Alloys and Compounds, 2014, 592, P. 306-312.

18. Ilic´ N.I., Bobic´ J.D., Stojadinovic´ B.S., Dzˇunuzovic´ A.S., Vijatovic´ Petrovic´ M.M., Dohcˇevic´-Mitrovic´ Z.D., Stojavinoc´ B.D. Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium. Materials Research Bulletin, 2016, 77, P. 60-69.

19. Tomina E.V., Perov N.S., Mittova I.Y., Alekhina Y.A., Stekleneva O.V., Kurkin N.A. Microwave synthesis and magnetic properties of bismuth ferrite nanopowder doped with cobalt.Russian Chemical Bulletin, 2020, 69(5), P. 941-946.

20. Naveen K., Kumar N., Rani S., Mandal T., Gaur A., Babu P.D., Siruguri V., Maji P. K., Kanungo S., Paul A.K. Investigation of multiferroic behaviour at room temperature in Bi-induced orthoferrite: combined experimental and first principles studies. Bulletin of Materials Science, 2020, 43(1), 196.

21. Suthar L., Bhadala F., Kumari P., Roy M. Structural, morphological, magnetic and spectral studies of Bi3+ substituted YFeO3 Nano-powders: Obtained by sol-gel synthesis. Journal of Electroceramics, 2020, 44(4), P. 195-202.

22. Rosales-Gonza´lez O., Jesu´s S.D., Pedro-Garc´ıa F., Corte´s-Escobedo C.A., Ram´ırez-Cardona M., Bolar´ın-Miro´ A.M. Enhanced Multiferroic Properties of YFeO3 by Doping with Bi3+. Materials, 2019, 12(13), 2054.

23. Suthar L., Bhadala F., Roy M. The impact of Bi3+ substitution for Y3+ cation on structural, topographical, electrical and thermal behaviour of YFeO3. Ceramics International, 2019, 45(16), P. 20891-20899.

24. Liu Y.-H., Kuo Y.-S., Liu W.-C., Chou W.-L. Photoelectrocatalytic activity of perovskite YFeO3/carbon fiber composite electrode under visible light irradiation for organic wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, P. 227-236.

25. Luo W., Zhu L., Wang N., Tang H., Cao M., She Y. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental Science and Technology, 2010, 44(5), P. 1786-1791.

26. Ju L., Chen Z., Fang L., Dong W., Zheng F., Shen M. Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. Journal of the American Ceramic Society, 2011, 94(10), P. 3418-3424.

27. Tikhanova S.M., Lebedev L.A., Martinson K.D., Chebanenko M.I., Buryanenko I.V., Semenov V.G., Nevedomskiy V.N., Popkov V.I. Synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Journal of Chemistry, 2021, 45(3) P. 1541-1550.

28. Zhang Y., Yang J., Xu J., Gao Q., Hong Z. Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities. Materials Letters, 2012, 81, P. 1-4.

29. Tang P., Sun H., Chen H., Cao F. Hydrothermal Processing-Assisted Synthesis of Nanocrystalline YFeO3 and its Visible-Light Photocatalytic Activity. Current Nanoscience, 2012, 8(1), P. 64-67.

30. Seroglazova A.S., Lebedev L.A., Chebanenko M.I., Sklyarova A.S., Buryanenko I.V., Semenov V.G., Popkov V.I. Ox/Red-controllable combustion synthesis of foam-like PrFeO3 nanopowders for effective photo-Fenton degradation of methyl violet. Advanced Powder Technology, 2022, 33(2), P. 103398.

31. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.Sh., Gusarov V.V. Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO3.Russian Journal of Inorganic Chemistry, 2021, 66(2), P. 163-169.

32. Wang M., Wang T., Song S.-H., Ravi M., Liu R.-C., Ji S.-S. Effect of calcination temperature on structural, magnetic and optical properties of multiferroic YFeO3 nanopowders synthesized by a low temperature solid-state reaction. Ceramics International, 2017, 43(13), P. 10270-10276.

33. Proskurina O.V., Abiev R.S., Danilovich D.P., Panchuk V.V., Semenov V.G., Nevedomsky V.N., Gusarov V.V. Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chemical Engineering and Processing - Process Intensification, 2019, 143(7), P. 107598.

34. Popkov V.I., Almjasheva O.V., Schmidt M.P., Izotova S.G., Gusarov V.V. Features ofnanosized YFeO3 formation under heat treatment of glycine-nitrate combustion products.Russian Journal of Inorganic Chemistry, 2015, 60(10), P. 1193-1198.


Review

For citations:


Sokolova A.N., Proskurina O.V., Danilovich D.P., Gusarov V.V. Photocatalytic properties of composites based on Y1-xBixFeO3 (0≤x≤0.15) nanocrystalline solid solutions with a hexagonal structure. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):87-95. https://doi.org/10.17586/2220-8054-2022-13-1-87-95

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)