Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and antibacterial activity of transition metal (Ni/Mn) co-doped TiO2 nanophotocatalyst on different pathogens under visible light irradiation

https://doi.org/10.17586/2220-8054-2022-13-1-104-114

Abstract

Visible light driven photocatalytically active mesoporous nanomaterials plays an indispensable role for antibacterial activity in low light applications. In this work, nanomaterials were handily prepared by varying the dopant concentrations from 0.25 to 1.0 Wt% using sol-gel method. All the prepared samples were characterized by Powdered X-ray diffraction (XRD), Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible diffuse reflectance spectroscopy (UV/Vis-DRS), Transmission electron microscopy (TEM) and Brauner-Emmett-Teller (BET). The characterization results revealed that a photocatalytically active phase i.e.; anatase and rutile mixed phase was observed for co-doped catalyst samples. Due to substitutional doping of Mn and Ni by replacing Ti, the frequency shift of Ti-O-Ti in the catalyst samples was observed by FTIR. Further the catalyst shows roughmorphology, irregular particle shape with less particle size having high surface area, and reduced band gap energy. The photocatalytically active materials antibacterial activity was discerned by using Sphingomonas paucimobilis and Pseudomonas fluorescence . The result of antibacterial activity shows that among all nanocatalysts, NMT2 catalyst shows optimum zone of inhibition at 25.1 ± 0.2 mm for Sphingomonas paucimobilis and 18.1 ± 0.2 mm for Pseudomonas fluorescence compared to standard (chloramphenicol) value at 24 . 1 ± 0 . 1 mm and 23.1 ± 0.05 mm at 100 µg/mL respectively.

About the Authors

S. R. Miditana
Government Degree College; Andhra University
Russian Federation


S. R. Tirukkovalluri
Andhra University
Russian Federation


I. M. Raju
Andhra University
Russian Federation


References

1. Fujishima A., Kobayakawa K., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, P. 37-38.

2. Mital G.S., Tripathi M. A review on the synthesis of TiO2 nanoparticles by solution route. Central European J. of Chemistry, 2021, 10 (2), P. 279-294.

3. Fujishima A., Rao T.N., Tryle D. Titanium Dioxide photocatalysis. J. of photochemistry and photobiology C: photochemistry reviews, 2000, 1, P. 1-21.

4. Vassilios B., Danae V., Dimitrios K., George K. Modified TiO2 based photocatalysts for improved air and health quality. J. of Materiomics, 2017, 3 (1), P. 3-16.

5. Ashahi R., Morikawa T. Visible-light photocatalysis in Nitogen-doped Titanium oxides. Science, 2001, 293, P. 269-271.

6. Umar K., Aris A., et al. Synthesis of visible light active doped TiO2 for the degradation of organic pollutants-methylene blue and glyphosate. J. of Analytical Science and Technology, 2016, 7, 29.

7. Jing D., Zhang Y., Guo L. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chemical Physics Letters, 2005, 415, P. 74-78.

8. Miditana S.R., Tirukkovalluri S.R., Alim A.S., Imandi M.R. Photocatalytic degradation of allura red by Mn-Ni co-doped nanotitania under visible light irradiation. IJITEE, 2019, 8, P. 650-657.

9. Zhao C.F., Song L., et al. Electronic, optical and photocatalytic behavior of Mn, N doped and codoped TiO2: Experiment and simulation. J. of Solid State Chemistry, 2016, 235, P. 160-168.

10. Pelaez M., Nicholas T.N., et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012, 125, P. 331-349.

11. Shifu C., Sujuani Z., Wei W.Z. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2. J. of Hazardous Materials, 2008, 55, P. 320-326.

12. Wilke K., Breuer H.D. The influence of transition metal doping on the physical and photocatalytic properties of titania. J. of Photochemistry and Photobiology A: Chemistry, 1999, 121, P. 49-53.

13. Tavakoli A., Sohrabi M., Kargariandii Ali. A Review of Methods for Synthesis of Nanostructured Metals with Emphasis on Iron Compounds. Chemical Papers, 2007, 61, P. 151-170.

14. Rafiq M.A., Ikram M., Nafees M., Ali S. Structural, optical and magnetic study of Nidoped TiO2 nanoparticles synthesized by solgel method.Int. Nano Letters, 2018, 8, P. 1-8.

15. Boyan B., James H., Judicael P. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. of Antimicrobial Chemotherapy, 2008, 61 (6), 1295.

16. Cappucino J.G., Sherman N. Microbiology, A Laboratory Mannual. 6th Ed., Pearson Education (Singapore) Ltd, 2004, 4, 199.

17. Avasarala B.K., Raoi T.S., Sridher B. Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye.Int. J. of Materials Research, 2010, 101, P. 1-7.

18. Alim S.A., Rao T.S., et al. Fabrication of visible light driven nano structured Copper, Boron codoped TiO2 for photocatalytic removal of Lissamine Green B. J. of Saudi Chemical Societies, 2019, 23, P. 92-103.

19. Liu G., Wang K., Zhou Z. Influence of doping on antibacterial effect of TiO2 nanoparticles. Materials Science Forum, 2006, 510-511, P. 86-89.

20. Gharibshahi E., Saion E. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles.Int. J. of Molecular Sciences, 2012, 13, P. 14723-14741.

21. Taranjeeti K., Abhishek S., Amrit P.T. Wanchoo R.K. Utilization of solar energy for the degradation of carbendazim and propiconazole Fe doped TiO2. Solari Energy, 2016, 125, P. 65-76.

22. Zhongping Y., Fanghou J., et al. Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation. Applied Materials Science, 2010, 2, P. 2617-2622.

23. Sharotri N., Sud D. Aigreener approach to synthesize visible light responsive nanoporous S-doped TiO2 with enhanced photocatalytic activity. New J. of Chemistry, 2015, 39, P. 217-223.

24. Othmana I., Mohamed R. Ibrahem F. Study of photocatalytic oxidation of indigo carmine dye on Mn supported TiO2. J. of Photochemistry and Photobiology A: Chemistry, 2007, 189, P. 80-85.

25. Jensen S., Kilin S.D. Electronic properties of Ni-doped TiO2 anatase. J. of Physics: Condensed Matter, 2015, 27, P. 1-13.

26. Shah S.M., Hussain S.M.H. Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Materials & Design, 2016, 96, P. 64-72.

27. Wang Y., Zhang R., Liangliang J., Lin L.S. First principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters, 2014, 9, P. 35-46.

28. Chang S., Chien-yao H., Pin-haniand L., Chang T. Preparation of phosphate Zr doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Applied Catalysis B: Environmental, 2009, 90, P. 233-241.

29. Christian D., Osorio S.M.P., et al. TiO2 anatase with a bandgap in the visible region. Nano Letters, 2014, 14, P. 6533-6538.

30. Chauhan R., Kumar R., Chaudhary A.P. Structural and photocatalytic studies of Mn doped TiO2 nanoiparticles. Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, P. 256-264.

31. Bhatia V., Dhir A. Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations. J. of Environmental Chemical Engineering, 2016, 4, P. 1267-1273.

32. Jayaseelan C., Rahuman A.A., et al. Biological approach to synthesize TiO2 nanoparticles using aeromonas hydrophilia and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 107, P. 82-89.


Review

For citations:


Miditana S.R., Tirukkovalluri S.R., Raju I.M. Synthesis and antibacterial activity of transition metal (Ni/Mn) co-doped TiO2 nanophotocatalyst on different pathogens under visible light irradiation. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):104-114. https://doi.org/10.17586/2220-8054-2022-13-1-104-114

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)