Synthesis, investigation, structural and elastic properties of MgxZn1-xFe2O4 nanoparticles
https://doi.org/10.17586/2220-8054-2022-13-4-456-463
Abstract
Magnesium-Zinc Ferrite nanoparticles of different compositions are synthesized by using the sol-gel auto-combustion method with citric acid as a fuel. Structural characteristics were studied using X-ray diffraction technique and it confirms the formation of cubic spinel structure. The ferrite nanoparticle size of synthesized powder ranges from 22 - 24 nm. The effect of change in Mg2+ content results in a change of the lattice parameter of ferrite nanoparticles. In the present paper, the structural parameters such as cation-cation and cation-anion distances, tetrahedral, octahedral bond lengths and bond angles, hopping lengths, shared, unshared tetrahedral, and octahedral edge are reported. FTIR spectra show two prominent peaks around 524 - 532 cm-1 (tetrahedral site) and 409 - 432 cm-1 (octahedral site) and the force constants of the octahedral and tetrahedral site of Mg-Zn ferrite were calculated. The elastic moduli and other factors such as longitudinal, transverse and mean velocity, Poisson ratio, and Debye temperature were determined.
About the Authors
P. V. PatilRussian Federation
N. D. Chaudhari
Russian Federation
P. R. Kute
Russian Federation
R. D. Kale
Russian Federation
References
1. Manikandam A., Judith Vijaya J., et al. Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices and Microstructures, 2013, 64, P. 118-131.
2. Kopaev A.V., Bushkova V.S. Application of the Electron Theory of Sintering to the Ferrite Systems. Acta Phys. Pol., A, 2010, 117, P. 30-33.
3. Pulisova P., Kovac J., Voigt A., Raschaman P. Structure and magnetic properties of Co and Ni nano-ferrites prepared by atwo step direct microemulsions synthesis. J. Magn. Magn. Mat., 2013, 341, P. 93-99.
4. Rodriguez P.Y.R., Hernandez D.A.C., et al. Structural and magnetic properties of Mg-Zn ferrites prepared by sol-gel method. J. Magn. Magn. Mat., 2017, 427, P. 268-271.
5. Koseoglu Y., Baykal A., et al. Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Alloys and Comp., 2008, 462, P. 209-213.
6. Qiu J., Wang C., Gu M. Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater. Sci. Eng. B, 2004, 112, P. 1-4.
7. Rahman S., Nadeem K., et al. Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram.Int., 2013, 39, P. 5235-5239.
8. Ichiyanagi Y., Kubota M., et al. Magnetic properties of Mg ferrite nanoparticles. J. Magn. Magn. Mat., 2007, 310, P. 2378-2380.
9. Thummer K.P., Chhantbar M.C., et al. Localized canted spin behavior in ZnX Mg1.5-X Mn0.5Fe2O4 spinel ferrite system. J. Magn. Magn. Mat., 2004, 28, P. 23-30.
10. Qunnunkad S., Winotal P., Phanichphant S. Cation distribution and magnetic behavior of Mg1-X ZnX Fe2O4 ceramics monitored Mossbauer Spectroscopy. J. Electroceram., 2006, 16, P. 363-368.
11. Gismelseed A.M., Mohammed K.A., et al. Structure and magnetic properties of ZnX Mg1-X Fe2O4 ferrites. J. Phys. Conf. Ser., 2010, 217, 012138.
12. Da Silva S.W., Nakagomi F., et al. Effect of Zn content in the structural and magnetic properties of ZnX Mg1-X Fe2O4 mixed ferrites monitored by Raman and Mossbauer spectroscopies. J. Appl. Phys., 2010, 107 (9), 09B503.
13. Ajitanshu Vedrtnam, Kishor Kalauni, Sunil Dubey, Aman Kumar. A comprehensive study on structure, properties, synthesis and characterization of ferrites. AIMS Materials Science, 2020, 7 (6), P. 800-835.
14. Md Atiqur Rahman, Mohammad Tariqul Islam, et al. Synthesis and characterization of Mg-Zn ferrite based flexible microwave composites and its application as SNG metamaterial. Scientific Reprots, 2021, 11, 7654.
15. Pankaj P. Khirade, Apparao R. Chavan, et al. Tuning of physical properties of multifunctional Mg-Zn spinel ferrite nanocrystals: a comparative investigations manufactured via conventional ceramic versus green approach sol-gel combustion route. Mater. Res. Express, 2020, 7, P. 1-16.
16. Thomas Dippong, Erika Andrea Levei, Oana Cadar. Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. Nanomaterials (Basel), 2021, 11 (6), 1560.
17. Kazi Haruum Maria, Choudhary Shamima, Hakim, M.A. Structural transformation and hysteresis behavior of Cu-Zn ferrites.Inter. Nano. Letters, 2013, 3, 42.
18. Pervaiz E., GulI. H. High frequency response, DC resistivity and magnetic studies of holomium substituted Ni-ferrite: A novel electromagnetic material. J. Magn. Magn. Mat., 2014, 349, P. 27-34.
19. Prasad V.B.B.V.S. Cation distribution, structural and electric studies on cadmium substituted nickel zinc ferrites. Mod. Phys. Lett. B, 2014, 28 (19), 1450155.
20. Talanov V.M. Calculation of structural parameters of spinels. Phys. Stat. Sol. B, 1981, 106, P. 99-106.
21. Khot V.M., Salunkhe A.B., et al. Low temperature synthesis of MnX Mg1-X Fe2O4 (x = 0 -1) nanoparticles: Cation distribution, structural and magnetic properties. J. Phys. D Appl. Phys., 2013, 46, 055303
22. Penchal Reddy M., Balkrishna G., et al. Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J. Physics Chem. Solids, 2010, 71 (9), P. 1373-1380.
23. Vara Prasad B.B.V.S., Rajesh Babu B., Siva Ram Prasad M. Structural and dielectric studies of Mg2+ substituted Ni-Zn ferrites. Material Science - Poland, 2015, 33 (4), P. 806-815.
24. Waldron R.D. Infrared spectra of ferrites. Physical Review, 1955, 99 (6), P. 1727-1735.
25. Pathak T.K., Buch J.J.U., et al. Infrared spectroscopy and elastic properties of nanocrystalline Mg-Mn ferrites prepared by co-precipitation technique. J. Nanoscience and Nanotechnology, 2008, 8, P. 4181-4187.
26. Mazen S.A., Zaki H.M., Mansour S.F. Infrared absorption and dielectric properties of Mg-Zn ferrite.Int. J. Pure and Applied Physics, 2007, 3 (1), P. 40-48.
27. Kazi H.M., Choudhary S., Hakim M.A. Structural phase transformation and hysteresis behavior of Cu-Zn ferrites.Int. Nano. Letters, 2013, 3 (42), P. 1-10.
28. Anderson O.L. Physical Acoustics, Vol. III, Part B, Academic Press, NY, 1965.
29. Kakani S.L., Hemrajani C. Text Book of Solid State Physics, 3rd Edition, S. Chand and Sons, New Delhi, 1997.
30. Wooster W.A. Physical properties and atomic arrangements in crystals. Rep. Prog. Phys., 1953, 19, P. 62-82.
31. Baldev Raj, V., Rajendran P., Palanichamy. Science and Technology of Ultrasonics, Narosa Pub. House, New Delhi, 2004.
32. Lakhani V.K., Modi K.B. Al3+ modified elastic properties of copper ferrite. Solid State Sci., 2010, 12 (12), P. 2134-2143.
33. Waldron R.D. Infrared spectra of ferrite. Physical Review, 1995, 99 (6), P. 1727-1735.
34. Patil V.G., Shirsath S.E., et al. Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloys and Comp., 2009, 488, P. 199-203.
35. Mazen S.A., Abu-Elsaad N.I. IR spectra, elastic and dielectric properties of Li-Mn ferrite. Hindawi Research Article, 2012, 907257.
36. Hasselmann D.P.N., Fulrath R.M. Effect of small fraction of spherical porosity on elastic moduli of glass. J. Am. Ceram. Soc., 1964, 47, P. 52-53.
37. Pugh S.F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag., 1954, 45, P. 823-843.
Review
For citations:
Patil P.V., Chaudhari N.D., Kute P.R., Kale R.D. Synthesis, investigation, structural and elastic properties of MgxZn1-xFe2O4 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):456-463. https://doi.org/10.17586/2220-8054-2022-13-4-456-463