Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Formation, structure, composition in the dispersed state, and behavior of nanoparticles heated in the Mg(OH)2-Ni(OH)2 system

https://doi.org/10.17586/2220-8054-2022-13-5-514-524

Аннотация

The effect of nickel content in Mg1-xNix(OH)2 nanoparticles produced by reverse co-precipitation on their structural characteristics, morphology and size parameters of crystallites and particles has been studied. The plate-shaped nanoparticles were shown to be predominantly single crystals. It has been determined that when the nickel content x in the hydroxide solid solution is not less than 0.4, the particle size sharply decreases and the number of stacking faults increases. The dependence of the dehydration temperature of Mg1-xNix(OH)2 nanoparticles on the nickel content has been revealed.

Об авторах

M. Kotova
I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences; V. I. Ulyanov St. Petersburg State Electrotechnical University “LETI”
Россия


T. Maslennikova
I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences; V. I. Ulyanov St. Petersburg State Electrotechnical University “LETI”
Россия


V. Ugolkov
I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences
Россия


V. Gusarov
I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences; V. I. Ulyanov St. Petersburg State Electrotechnical University “LETI”
Россия


Список литературы

1. Koverzanova E.V., Usachev S.V., Shilkina N.G., Lomakin S.M., Gumargalieva K.Z., Zaikov G.E. Specific features of thermal degradation of polypropylene in the presence of magnesium hydroxide.Russian Journal of Applied Chemistry, 2004, 77(3), P. 445-448. https://doi.org/10.1023/B:RJAC.0000031288.62488.04

2. Saoud Kh.M., Saeed Sh., Al-Soubaihi R.M., Bertino M.F. Microwave assisted preparation of magnesium hydroxide nano-sheets. American Journal of Nanomaterials, 2014, 2(2), P. 21-25.

3. Korolev V.A., Samarin E.N., Panfilov V.A., Romanova I.V. Sorption properties of brucite and brucite-based clay mixtures. Ecology and Industry of Russia, 2016, 20(1), P. 18-24. (In Russ.)

4. Marchenko L.A., Marchenko L.A. Influence in common-besieged hydroxides on sorption ions of heavy metals.Russian Journal of Sorption and chromatography processes, 2009, 9(6), P. 868-876.

5. Chanda D.K., Mukherjee D., Das P.S., Ghosh C. Toxic heavy metal ion adsorption kinetics of Mg(OH)2 nanostructures with superb efficacies. Materials Research Express, 2018, 5(7), P. 1-23.

6. Kang J., Schwendeman S.P.Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(d,l-lactide-co-glycolide) implants. Biomaterials, 2002, 23, P. 239.

7. Henrist C., Mathieu J.-P., et al. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Growth, 2003, 249, P. 321.

8. Matsukevich I.V., Ruchets A.N., Krutko N.P., et al. Synthesis and adsorption properties of nanostructured powders Mg(OH)2 and MgO. Proceedings of the National Academy of Sciences of Belarus, Chemical series, 2017, 53(4), P. 38-44.

9. Maslennikova T.P., Kotova M.E., Lomakin M.S., et al. Role of mixing reagent solutions in the formation of morphological features of nanocrystalline particles of magnesium hydroxide and oxide.Russ. J. Inorg. Chem., 2022, 67, P. 810-819.

10. Chen Y., Zhou T., Fang H., et al. A novel preparation of nano-sized hexagonal Mg(OH)2. Procedia Engineering, 2015, 102, P. 388-394.

11. Kovalenko V.L., Kotok V.A., Malyshev V.V. Electrochemical obtaining of nickel hydroxide from nickel plating waste water for application in the alkali secondary cells. Theoretical and applied ecology, 2019, 2, P. 108-112.

12. Maslennikova T.P., Gatina E.N., Kotova M.E., Ugolkov V.L., Abiev R.Sh., Gusarov V.V. Formation of chrysotile-structured hydrous magnesium silicate nanoscrolls from nanocrystalline magnesium hydroxide and their thermally stimulated transformation. Inorganic Materials, 2022, In press. (In Russ.)

13. Bloise A., Barrese E., Apollaro C. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neues Jahrbuch fu¨r Mineralogie, 2009, 185, P. 297-304.

14. Yousefi S.R., Ghanbari D., Salavati-Niasari M. Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. Journal of Nanostructures, 2016, 6(1), P. 80-85.

15. E.V. Polyakov, R.R. Tsukanov, L.Yu. Buldakova, Yu.V. Kuznetsova, I.V. Volkov, V.P. Zhukov, M.A. Maksimova, A.V. Dmitriev, I.V. Baklanova, O.A. Lipina, A.P. Tyutyunnik Chemical bath precipitation and properties of β-Ni(OH)2 films prepared in aqueous ammoniac solutions.Russ. J. Inorg. Chem., 2022, 67(6), P. 912-920.

16. Korytkova E.N., Pivovarova L.N., Drozdova I.A., Gusarov V.V. Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions. Glass Physics and Chemistry, 2005, 31(6), P. 797-802.

17. Oliva P., Leonardi J., Laurent J.F., Delmas C., Braconnier J.J., Figlarz M., Fievet F., de Guibert A. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources., 1982, 8, P. 229-255.

18. Yan Z., Yu X., Zhang Y., Jia H., Sun Z., Du P. Enhanced visible light-driven hydrogen production from water by a noble-metal-free system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst. Applied Catalysis B: Environmental, 2014, 160-161, P 173-178.

19. Vidotti M., Torresi R., De Torresi S.I.C. Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Quim. Nova, 2010, 33, P. 2176-2186.

20. Aghazadeh M., Ghaemi M., Sabour B., Dalvand S. Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance super-capacitors. J. Solid State Electrochem, 2014, 18, P. 1569-1584.

21. Gao M., Sheng W., Zhuang Z., Fang Q., Gu S., Jiang J., Yan Y. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electro-catalyst. J. Am. Chem. Soc, 2014, 136, P. 7077-7084.

22. Cheng H., Su A.D., Li S., Nguyen S.T., Lu L., Lim C.Y.H., Duong H.M. Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chem. Phys. Lett, 2014, 601, P. 168-173.

23. Bode H., Dehmelt K., Witte J. Zur kenntnis der nickelhydroxidelektrode-I.U¨ber das nickel (II)-hydroxidhydrat. Electrochim. Acta, 1966, 11, P. 1079-1087.

24. McEwen R.S. Crystallographic studies on nickel hydroxide and the higher nickel oxides. J. Phys. Chem, 1971, 75, P. 1782-1789.

25. Desgranges L., Calvarin G., Chevrier G.Interlayer interactions in Mg(OH)2: A Neutron Diffraction Study of Mg(OH)2. Acta Cryst, 1996, B52, P. 82-86.

26. Hall D.S., Lockwood D.J., Bock C., MacDougall B.R. Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 471 (2174), P. 20140792-20140792.

27. Rall J.D., Seehra M.S., Shah N., Huffman G.P.Comparison of the nature of magnetism in α-Ni(OH)2 and β-Ni(OH)2. J. Appl. Phys, 2010, 107(9), 09B511.

28. Wallner H., Gatterer K. Growth of Pure Ni(OH)2 Single Crystals from Solution - Control of the Crystal Size. Anorg. Allg. Chem., 2002, 628, P. 2818-2820.

29. Casas-Cabanas M., Palac´ın M.R., Rodr´ıguez-Carvajal J. Microstructural analysis of nickel hydroxide: Anisotropic size versus stacking faults. Powder Diffraction, 2005, 20(4), P. 334-344.

30. Wehrens-Dijksma M., Notten P.H.L. Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochimica Acta, 2006, 51(18), P. 3609-3621.

31. Ramesh T.N., Kamath P.V. Synthesis of nickel hydroxide:Effect of precipitation conditions on phase selectivity and structural disorder. J. Power Sources, 2006, 156, P. 655-661.

32. Rajamathi M., Kamatha P.V., Seshadrib P. Polymorphism in nickel hydroxide: role of interstratication. J. Mater. Chem, 2000, 10, P. 503-506.

33. Faure C., Delmas C., Fouassier M. J. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Power Sources, 1991, 35(3), P. 279-290.

34. Hall D.S., Lockwood D.J., Poirier S., Bock C., MacDougall B.R. Raman and Infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J. Phys. Chem. A, 2012, 116(25), P. 6771-6784.

35. Delmas C., Tessier C. Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity. J. Mater. Chem, 1997, 7, P. 1439-1443.

36. Tessier C., Haumesser P.H., Bernard P., Delmas C. The structure of Ni(OH)2: from the ideal material to the electrochemically active one. J. Electrochem. Soc, 1999, 146, P. 2059-2067.

37. Ramesh T.N., Jayashree R.S., Kamath P.V. Disorder in layered hydroxides: DIFFaX simulation of the X-Ray powder diffraction patterns of nickel hydroxide. Clays Clay Miner, 2003, 51, P. 570-576.

38. Ramesh T.N., Kamath P.V. The effect of stacking faults on the electrochemical performance of nickel hydroxide electrodes. Mater. Res. Bull, 2008, 43, P. 2827-2832.

39. de Oliveira E.F., Hase Y. Infrared study of magnesium-nickel hydroxide solid solutions. Vib. Spectros., 2003, 31, P. 19-24.

40. Batsanov S.S. Structural chemistry. Facts and dependencies. M.: Dialog-MGU, 2000, 292 p. (In Russ.)

41. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(3), P. 405-417.

42. Gusarov V.V., Almjasheva O.V. The role of non-autonomous state of matter in the formation of structure and properties of nanomaterials. Chapter13 in the book Nanomaterials: properties and promising applications. Ed. A.B. Yaroslavtsev, Scientific World Publishing House, Moscow, 2014, P. 378-403.


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2022;13(5):514-524. https://doi.org/10.17586/2220-8054-2022-13-5-514-524

For citation:


Kotova M.E., Maslennikova T.P., Ugolkov V.L., Gusarov V.V. Formation, structure, composition in the dispersed state, and behavior of nanoparticles heated in the Mg(OH)2-Ni(OH)2 system. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(5):514-524. https://doi.org/10.17586/2220-8054-2022-13-5-514-524

Просмотров: 4


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)