Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Synthesis and optical properties of MnSe nanostructures: A review

https://doi.org/10.17586/2220-8054-2022-13-5-546-564

Аннотация

Manganese selenide is an important diluted magnetic semiconductor (DMS) material having both optical and magnetic properties especially in the nanometer scale. Because of the phenomena of polymorphism exhibited by MnSe, it can be an interesting material for controlled polymorphism synthesis by using different synthesis procedures. In this review article, we discuss various synthesis procedures (wet chemical and deposition methods) of different MnSe nanostructures and their optical properties. The dependence of various optical properties (UV-Vis spectroscopy, photoluminescence spectroscopy and time resolved photoluminescence spectroscopy) of the MnSe nanostructures on the methods of synthesis is discussed in this article. We are specially focused on the reaction parameters of synthesis process that influence on the optical properties of the MnSe nanostructures. Moreover, the Stokes shift is calculated for the MnSe nanostructures synthesized by different procedures. Large Stokes shifts observed for MnSe nanostructures create a promising potentials in various applications including multiplex assay, bio-imaging, bio-sensing etc.

Об авторах

R. Sarma
Mehr Chand Mahajan DAV College for Women
Россия


M. Sarma
Autonomous University of Barcelona
Россия


M. Kashyap
Polymer Technology Consultant
Россия


Список литературы

1. Furdyna J.K. Diluted magnetic semiconductors. J. of Applied Physics, 1988, 64 (4), R29-R64.

2. Furdyna J.K. Diluted magnetic semiconductors: An interface of semiconductor physics and magnetism. J. of Applied Physics, 1982, 53 (11), P. 7637-7643.

3. Dietl T. Diluted magnetic semiconductors. In Handbook on semiconductors, T.S. Moss ed., 1994, 3b, Elsevier, Amsterdam Publishing, P. 1254-1329.

4. Alsaad A. Structural and magnetic properties of Mn-based diluted magnetic semiconductors and alloys. Physics Research International, 2009, 2009, P. 1-4.

5. Sines I.T., et al. Colloidal synthesis of non equilibrium wurtzite type MnSe. Angewandte Chemie International Edition, 2010, 49 (27), P. 4638-4640.

6. Wu M., et al. Hydrothermal preparation of α-MnSe and MnSe2 nanorods. J. of Crystal Growth, 2004, 262 (1-4), P. 567-571.

7. Bououdina M., Song Y., Azzaza S. Nano-structured diluted magnetic Semiconductors. In Reference module in materials science and materials engineering, 2016, Elsevier, Amsterdam Publishing, P. 1-7.

8. Kacman P. Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures. Semiconductor Science and Technology, 2001, 16 (4), R25-R39.

9. Wang C., Yang F., Gao Y. The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance. Nanoscale Advances, 2020, 2 (10), P. 4323-4340.

10. Rai D.P., et al. Spin-induced transition metal (TM) doped SnO2 a dilute magnetic semiconductor (DMS): A first principles study. J. of Physics and Chemistry of Solids, 2018, 120, P. 104-108.

11. Brozek C.K., et al. Soluble supercapacitors: large and reversible charge storage in colloidal Iron-doped ZnO nanocrystals. Nano Letters, 2018, 18 (5), P. 3297-3302.

12. Balti I., et al. Nanocrystals of Zn(Fe)O-based diluted magnetic semi-conductor as potential luminescent and magnetic bimodal bioimaging probes. RSC Advances, 2014, 4 (102), P. 58145-58150.

13. Decker D.L., Wild R. Optical properties of a-MnSe. Physical Review B, 1971,4 (10), 3425.

14. Bouroushian M. Electrochemistry of metal chalcogenides, 2010, Springer, Berlin, Heidelberg Publishing, 358 pp.

15. Murray R.M., Forbes B.C., Heyding R.D. The preparation and paramagnetic susceptibility of β-MnSe. Canadian J. of Chemistry, 1972, 50 (24), P. 4059-4061.

16. Schlesinger M. The Mn-Se (manganese-selenium) system. J. of phase equilibria, 1998, 19 (6), P. 588-590.

17. Prasad M., et al. Electrical transport properties of manganese selenide. Materials Chemistry and Physics, 1991, 30 (1), P. 13-17.

18. O’Hara D.J., et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Letters, 2018, 18 (5), P. 3125-3131.

19. Yang X., et al. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: optical and magnetic properties. Cryst. Eng.Comm., 2012, 14 (20), P. 6916-6920.

20. Sarma R., et al. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system. Nanotechnology, 2014, 25 (27), 275101.

21. Song G., et al. Core-Shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Advanced Materials, 2015, 27 (40), P. 6110-6117.

22. Chen S.-H., et al. Ultrasmall MnSe nanoparticles as t1-mri contrast agents for in vivo tumor imaging. ACS Applied Materials & Interfaces, 2022, 14 (9), P. 11167-11176.

23. Bharathi M V., et al. Green synthesis of highly luminescent biotin-conjugated CdSe quantum dots for bioimaging applications. New J. of Chemistry, 2020, 44 (39), P. 16891-16899.

24. Chakraborty S., et al. Multifunctional, high luminescent, biocompatible cdte quantum dot fluorophores for bioimaging applications.International J. of Nanoscience, 2011, 10(04n05), P. 1191-1195.

25. Wang Z., et al. L-Aspartic acid capped CdS quantum dots as a high performance fluorescence assay for Silver ions (I) detection. Nanomaterials, 2019, 9 (8), 1165.

26. Kim J., et al. High-quantum yield alloy-typed core/shell CdSeZnS/ZnS quantum dots for bio-applications. J. of Nanobiotechnology, 2022, 20 (1), P.1-12.

27. Ji X., et al. Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids and Surfaces B: Biointerfaces, 2014, 124, P. 132-139.

28. Chan W.C.W., et al. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 2002, 13 (1), P. 40-46.

29. Xing Y., Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer biomarkers: section A of Disease markers, 2008, 4 (6), P. 307-319.

30. Derfus A.M., Chan W.C.W., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano letters, 2003, 4 (1), P. 11-18.

31. Pradhan N., et al. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano letters, 2007,7 (2), P. 312-317.

32. Pradhan N., et al. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J. of the American Chemical Society, 2005, 127 (50), P. 17586-17587.

33. Wang C., et al. Aqueous synthesis of mercaptopropionic acid capped Mn2+-doped ZnSe quantum dots. J. of Materials Chemistry, 2009, 19 (38), P. 7016-7022.

34. Zhu D., et al. Green synthesis and potential application of low-toxic Mn: ZnSe/ZnS core/shell luminescent nanocrystals. Chem.Commun., 2010, 46 (29), P. 5226-5228.

35. Pearson R. Hard and soft acids and bases. J. of the American Chemical Society, 1963, 85 (22), P. 3533-3539.

36. Wu M., et al. Hydrothermal preparation of α-MnSe and MnSe2 nanorods. J. of crystal growth, 2004, 262 (1-4), P. 567-571.

37. Moloto N., et al. Synthesis and characterization of MnS and MnSe nanoparticles: Morphology, optical and magnetic properties. Optical Materials, 2013, 36 (1), P. 31-35.

38. Sarma R., Mohanta D. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins. Materials Chemistry and Physics, 2017, 187, P. 46-53.

39. Deka A., Saha A., Mohanta D. Consequence of surfactant coating on the Raman active modes and highly symmetric blue-emission decay dynamics of cubic phase MnSe quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 2019, 113, P. 226-232.

40. Sun J., et al. Controlled synthesis of ferromagnetic MnSex particles. Chinese Physics B, 2016, 25 (10), P. 107405.

41. Deka A., Mohanta D. Noticeable size dispersity and optical stability of sodium dodecyl sulphate (SDS)-coated MnSe quantum dots in extreme natural environment. Applied Physics A, 2019, 125 (9), P. 1-10.

42. Sahoo S., et al. Hydrothermally prepared α-MnSe nanoparticles as a new pseudocapacitive electrode material for supercapacitor. Electrochimica Acta, 2018, 268, P. 403-410.

43. Tang H., et al. Hydrothermally synthesized MnSe as high cycle stability anode material for lithium-ion battery. Ionics, 2020, 26 (1), P. 43-49.

44. Kharisov B.I., Kharissova O.V., ed., Handbook of greener synthesis of nanomaterials and compounds: volume 1: fundamental principles and methods. 2021, Elsevier Publishing, 976 pp.

45. Qin T., et al. α-MnSe crystallites through solvothermal reaction in ethylenediamine. Inorganic Chemistry Communications, 2002, 5 (5), P. 369-371.

46. Lei S., Tang K., Zheng H. Solvothermal synthesis of α-MnSe uniform nanospheres and nanorods. Materials Letters, 2006, 60 (13), P. 1625-1628.

47. Luo Q. Nanoparticles inks. In Solution processed metal oxide thin films for electronic applications, Z. Cui, G. Korotcenkov, eds., 2020, Elsevier, New York Publishing, P. 63-82.

48. Thanh N.T., Maclean N., Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical reviews, 2014, 114 (15), P. 7610-7630.

49. Donega´ de M., Liljeroth C.P., Vanmaekelbergh D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small, 2005, 1 (12), P. 1152-1162.

50. Salaheldin A.M., et al. Automated synthesis of quantum dot nanocrystals by hot injection: mixing induced self-focusing. Chemical Engineering J., 2017, 320, P. 232-243.

51. LaMer V.K., Dinegar R.H. Theory, production and mechanism of formation of monodispersed hydrosols. J. of The American Chemical Society, 1950, 72 (11), P. 4847-4854.

52. Li N., et al. Synthesis of high-quality α-mnse nanostructures with superior lithium storage properties. Inorganic Chemistry, 2016, 55 (6), P. 2765-2770.

53. Das K., et al. Size-dependent magnetic properties of cubic-phase MnSe nanospheres emitting blue-violet fluorescence. Materials Research Express, 2018, 5 (5), 056106.

54. Martin P.M. Chemical vapor deposition. In Handbook of deposition technologies for films and coatings: science, applications and technology, 2009, William Andrew Publishing, P. 314-361.

55. Chun H., et al. Morphology-tuned growth of α-mnse one-dimensional nanostructures. J. of Physical Chemistry C, 2006, 111 (2), P. 519-525.

56. Tomasini P., et al. Methylpentacarbonylmanganese as organometallic precursor for the epitaxial growth of manganese selenide heterostructures. J. of crystal growth, 1998, 193 (4), P. 572-576.

57. Zou J., et al. Controlled growth of ultrathin ferromagnetic β-MnSe semiconductor. Smart Mat., 2022, 3 (3), P. 482-490.

58. Balakrishnan G., et al. Growth of nanolaminate structure of tetragonal zirconia by pulsed laser deposition. Nanoscale research letters, 2013, 8 (1), P. 1-7.

59. Norton D.P. Pulsed laser deposition of complex materials: progress toward applications in pulsed laser deposition of thin films: applications-led growth of functional materials, R. Eason, ed., 2007, Wiley Publishing, P. 1-31.

60. Zhu X.N., et al. Piezoelectric and dielectric properties of multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 thin films. ACS Applied Materials & Interfaces, 2016, 8 (34), P. 22309-22315.

61. Xue M.-Z., Fu Z.-W. Manganese selenide thin films as anode material for lithium-ion batteries. Solid State Ionics, 2007, 178 (3), P. 273-279.

62. Perkowitz S. Optical characterization of semiconductors: infrared, Raman, and photoluminescence spectroscopy, 1993, Elsevier Publishing, 220 pp.

63. Stepniak G., Schu¨ppert M., Bunge C.-A. Polymer-optical fibres for data transmission. In Polymer optical fibres, C.-A. Bunge, T. Gries, M. Beckers, eds., 2017, Woodhead Publishing, P. 217-310.

64. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271 (5251), P. 933-937.

65. Nair A.K., et al. Optical characterization of nanomaterials. In Characterization of nanomaterials, S.M. Bhagyaraj, et al. eds., 2018, Woodhead Publishing, P. 269-299.

66. Lei S., Tang K., Zheng H., Solvothermal synthesis of α-MnSe uniform nanospheres and nanorods. Materials Letters, 2006, 60 (13-14), P. 1625-1628.

67. Heulings, et al. Mn-substituted inorganic?organic hybrid materials based on ZnSe: nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect. Nano Letters, 2001, 1 (10), P. 521-525.

68. Dwandaru W.S.B., Bilqis S.M., Wisnuwijaya R.I. Optical properties comparison of carbon nanodots synthesized from commercial granulated sugar using hydrothermal method and microwave. Materials Research Express, 2019, 6 (10), 105041.

69. Zhu K., et al. Manganese-doped MnSe/CdSe core/shell nanocrystals: Preparation, characterization, and study of growth mechanism. J. of Materials Research, 2011, 26 (18), P. 2400-2406.

70. Zhou R., et al. Nanocrystals for large Stokes shift-based optosensing. Chinese Chemical Letters, 2019, 30 (10), P. 1843-1848.

71. Bera D., et al. Quantum dots and their multimodal applications: a review. Materials, 2010, 3 (4), P. 2260-2345.

72. Kim S.H., et al. Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomaterials, 2020, 10 (8), 1589.

73. Kundu J., et al. Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation. Nano Letters, 2012, 12 (6), P. 3031-3037.

74. Galiyeva P., et al. Mn-doped quinary Ag-In-Ga-Zn-S quantum dots for dual-modal imaging. ACS omega, 2021, 6 (48), P. 33100-33110.

75. Zhou R., et al. Enriching Mn-doped znse quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Applied Materials & Interfaces, 2018, 10 (40), P. 34060-34067.

76. Ren T.-B., et al. A general method to increase stokes shift by introducing alternating vibronic structures. J. of the American Chemical Society, 2018, 140 (24), P. 7716-7722.

77. Deng Z., et al. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet a to blue photoluminescence. Langmuir, 2009, 25 (1), P. 434-442.

78. Artesani A., et al. A photoluminescence study of the changes induced in the zinc white pigment by formation of zinc complexes. Materials, 2017, 10 (4), 340.

79. Hung C.-C., et al. Strong green photoluminescence from InxGa1-xN/GaN nanorod arrays. Optics express, 2009, 17, P. 17227-17233.

80. Sheats G.F., Forster L.S. Fluorescence lifetimes in hydrated bovine serum albumin powders. Biochemical and Biophysical Research Communications, 1983, 114 (3), P. 901-906.

81. Schlegel G., et al. Fluorescence decay time of single semiconductor nanocrystals. Physical Review Letters, 2002, 88 (13), 137401.

82. Telgmann T., Kaatze U. Monomer exchange and concentration fluctuations of micelles broad-band ultrasonic spectrometry of the system triethylene glycol monohexyl ether/water. The J. of Physical Chemistry A, 2000, 104 (6), P. 1085-1094.

83. Yang W., et al. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Chemical science, 2020, 11 (22), P. 5779-5789.

84. Chatterjee A., Maity B., Seth D. Photophysics of 7-(diethylamino)coumarin-3-carboxylic acid in cationic micelles: effect of chain length and head group of the surfactants and urea. RSC Adv., 2014. 4 (64), P. 34026-34036.

85. Saha J., et al. Enhancing the performance of heterogeneously coupled InAs Stranski-Krastanov on submonolayer quantum dot heterostructures. Superlattices and Microstructures, 2019, 135, 106260.

86. Bautista M., et al. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. of Magnetism and Magnetic Materials, 2005, 293, P. 20-27.

87. Lei S., Tang K., Zheng H. Solvothermal synthesis of α-MnSe uniform nanospheres and nanorods. Materials Letters, 2006, 60 (13-14), P. 1625-1628.

88. Li L.-S., et al. Semiconductor nanorod liquid crystals. Nano Letters, 2002, 2 (6), P. 557-560.

89. Mokari T., Banin U. Synthesis and properties of CdSe/ZnS core/shell nanorods. Chemistry of Materials, 2003, 15 (20), P. 3955-3960.

90. Brennan M.C., et al. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. of the American Chemical Society, 2017, 139 (35), P. 12201-12208.

91. Placencia D., et al. Synthesis and optical properties of PbSe nanorods with controlled diameter and length. The J. of Physical Chemistry Letters, 2015, 6 (17), P. 3360-3364.

92. Qu L., Peng X. Control of photoluminescence properties of cdse nanocrystals in growth. J. of the American Chemical Society, 2002, 124 (9), P. 2049-2055.

93. Chun H.J., et al. Morphology-tuned growth of α-MnSe one-dimensional nanostructures. The J. of Physical Chemistry C, 2007, 111 (2), P. 519-525.

94. Gao, Z., Hao Y., Zheng M.-L. A fluorescent dye with large Stokes shift and high stability: synthesis and application to live cell imaging. RSC Adv., 2017, 7, P. 7604-7609.

95. He X., et al. Fluorescence resonance energy transfer mediated large stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Analytical Chemistry, 2012, 84 (21), P. 9056-9064.

96. Zhang S., et al. One-step synthesis of yellow-emissive carbon dots with a large Stokes shift and their application in fluorimetric imaging of intracellular pH. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117677.

97. Zhang J., et al. Highly stable near-infrared fluorescent organic nanoparticles with a large stokes shift for noninvasive long-term cellular imaging. ACS Applied Materials & Interfaces, 2015,7 (47), P. 26266-26274.


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2022;13(5):546-564. https://doi.org/10.17586/2220-8054-2022-13-5-546-564

For citation:


Sarma R., Sarma M., Kashyap M.J. Synthesis and optical properties of MnSe nanostructures: A review. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(5):546-564. https://doi.org/10.17586/2220-8054-2022-13-5-546-564

Просмотров: 2


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)