Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Mathematical model of weakly coupled spherical resonator chains under the influence of external magnetic field

https://doi.org/10.17586/2220-8054-2024-15-2-155-159

Abstract

The Schrödinger operators with constant magnetic field in a bent chain and Y-type chain of coupled balls are considered. Coupling exists due to point-like openings at the touching points of neighbor spheres. The mathematical background of the model is the theory of self-adjoint extensions of symmetric operators. The spectral equations for the model operators in each case were derived and analyzed.

About the Authors

A. S. Melikhova
ITMO University
Russian Federation

Alina S. Melikhova – Center of Mathematics, ITMO University.

Kroverkskiy, 49, St. Petersburg, 197101



A. I. Popov
ITMO University
Russian Federation

Anton I. Popov – Center of Mathematics, ITMO University.

Kroverkskiy, 49, St. Petersburg, 197101



I. V. Blinova
ITMO University
Russian Federation

Irina V. Blinova – Center of Mathematics, ITMO University.

Kroverkskiy, 49, St. Petersburg, 197101



I. Y. Popov
ITMO University
Russian Federation

Igor Y. Popov – Center of Mathematics, ITMO University.

Kroverkskiy, 49, St. Petersburg, 197101



References

1. Smith, Brian W., Monthioux, Marc, Luzzi, David E. Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chemical Physics Letters. 1999, 315(1-2), P. 31–36.

2. Lee J.Y., Lee Ch., Osawa E., et. al. Snapshots of the Fragmentation for C70@Single-Walled Carbon Nanotube: Tight-Binding Molecular Dynamics Simulations. International Journal of Molecular Science, 2021, 22(8), p. 3929.

3. Melikhova A.S., Popov I.Y. Spectral problem for solvable model of bent nanopeapod. Applicable Analysis. 2017, 96(2), P. 215–224.

4. Li Y., Kaneko T. and Hatakeyama R. Photoresponse of fullerene and azafullerene peapod field effect transistors, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), Genoa, Italy, 2009, P. 86–89.

5. Matsuno T., Terasaki S., Kogashi K. et al. A hybrid molecular peapod of sp2- and sp3-nanocarbons enabling ultrafast terahertz rotations. Nat Commun 12, 5062 (2021).

6. Iijima, Sumio. Carbon nanotubes: Past, present, and future. Physica B: Condensed Matter, 2002, 323(1-4), P. 1–5.

7. Utko P., Nygerd J., Monthioux M., Noe L. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots. Applied Physics Letters, 2006, 89(23), P. 233118.

8. Pichler T., Kuzmany H., Kataura H., Achiba Y. Metallic Polymers of C60 Inside Single-Walled Carbon Nanotubes. Physical Review Letters, 2001, 87(26), P. 267401.

9. Enyashin A.N., Ivanovskii A.L. Nanotubular composites: modeling of capillary filling of nanotubes of disulfide of molybdenum by molecules of TiCl4. Nanosystems: Phys. Chem. Math., 2010. 1(1) P. 63–71.

10. Tao X., Zhang Zh., et. al. Peapod-Like Structured B/N Co-Doped Carbon Nanotube Array Encapsulating MxPy (M = Fe, Co, and Ni) Nanoparticles for High-Rate Potassium Storage. ACS Appl Mater Interfaces, 2024, 16(1), P. 772–783.

11. Pazynin V. Multiplet properties in the spectrum of oscillations of coupled waveguide resonators chain. Radiofizika i Elektronika, 2017, 22(1), P. 3–14.

12. Gao Z., Gao F., Shastri K. et al. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain. Sci. Rep., 2016, 6, P. 25576.

13. Berezin F.A., Faddeev L.D. Remark on the Schro¨dinger equation with singular potential. Dokl. Akad. Nauk SSSR., 1961, 137(5), P. 1011–1014. 14.

14. Pavlov B.S. Extensions theory and explicitly solvable models. Russian Math. Surveys, 1987, 42(6), P. 127–168.

15. Popov I.Y. The resonator with narrow slit and the model based on the operator extensions theory. J. Math. Phys., 1992, 33(11), P. 3794–3801.

16. Albeverio S., Kuracov P. Singular Perturbations of Differential Operators: Solvable Schro¨dinger-type Operators (London Mathematical Society Lecture Note Series, Series Number 271), Cambridge, Cambridge University Press, 2000, 444 p.

17. Popov I.Yu. The extension theory and localization of resonances for the domain of trap type, Matematicheskii sbornik, 1990, 181(10), P. 1366–1390. English: Mathematics of the USSR-Sbornik, 1992, 71(1), P. 209–234.

18. Duclos P., Exner P., Turek O. On the spectrum of a bent chain graph. J. Phys. A: Math. Theor., 2008, 41, P. 415206.

19. Popov I.Yu., Smirnov P.I. Spectral problem for branching chain quantum graph. Phys. Lett. A, 2013, 377(6), P. 439–442.

20. Popov I.Y., Skorynina A.N., Blinova I.V. On the existence of point spectrum for branching strips quantum graph. J. Math. Phys., 2014, 55, P. 033504/1-20.

21. Blinova I.V., Popov A.I., Bosova A.A. Spectral gaps for star-like quantum graph and for two coupled rings. Nanosystems: Phys. Chem. Math., 2022, 13(3), P. 245–249.

22. Borisov D.I., Pankrashkin K.V. Gap opening and split band edges in waveguides coupled by a periodic system of small windows. Math. Notes, 2013, 93(5-6), P. 660–675.


Review

For citations:


Melikhova A.S., Popov A.I., Blinova I.V., Popov I.Y. Mathematical model of weakly coupled spherical resonator chains under the influence of external magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):155-159. https://doi.org/10.17586/2220-8054-2024-15-2-155-159

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)