Нанокомпозит оксид церия-оксид кремния как мультимодальная платформа для синергетического противоракового действия
https://doi.org/10.17586/2220-8054-2023-14-5-560-570
Аннотация
Наночастицы диоксида церия являются одними из наиболее перспективных материалов, обладающих pH-чувствительной окислительно-восстановительной активностью, применяющихся в биомедицинских нанотехнологиях. CeNPs известны своей способностью снижать токсичность химиотерапевтического препарата доксорубицина (DOX) при его инкубации с нормальными клеточными культурами. В работе предложен новый гибридный нанокомпозит SiNPs@DOX@CeNPs. Показано, что нанокомпозит обладал сферической формой, а его размер составил 190 нм. Нанокомпозит SiNPs@DOX@CeNPs обеспечивает синергетическую противоопухолевую активность в отношении клеточной культуры остеосаркомы человека (MNNG/HOS) in vitro. Нанокомпозит SiNPs@DOX@CeNPs может являться хорошим кандидатом для повышения эффективности противоопухолевой терапии с использованием DOX.
Об авторах
Е. А. ЗамятинаРоссия
С. Ю. Котцов
Россия
В. А. Аникина
Россия
А. Л. Попов
Россия
М. П. Шевелева
Россия
Н. Р. Попова
Россия
Список литературы
1. Sozarukova M.M., Ivanov V.K., Shestakova M.A., et.al. Quantification of free radical scavenging properties and SOD-like activity of cerium dioxide nanoparticles in biochemical models. Russ. J. Inorg. Chem., 2020, 65, P. 597–605.
2. Kozlova T.O., Popov A.L., Romanov M.V., et al. Ceric phosphates and nanocrystalline ceria: selective toxicity to melanoma cells. Nanosystems: Phys. Chem. Math., 2023, 14, P. 223–230.
3. Zhu W., Wei Z., Han C., Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. Nanomaterials, 2021, 11, 3346.
4. Yusuf A., Almotairy A.R.Z., Henidi H., Alshehri O.Y., Aldughaim M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers, 2023, 15, 1596.
5. Sozarukova M.M., Proskurnina E.V., Popov A.L., Kalinkin A.L., Ivanov V.K. New Facets of Nanozyme Activity of Ceria: Lipo- and Phospholipoperoxidase-like Behaviour of CeO2 Nanoparticles. RSC Adv., 2021, 11, P. 35351–35360.
6. Rajeshkumar S., Naik P. Synthesis and Biomedical Applications of Cerium Oxide Nanoparticles – A Review. Biotechnol. Rep. Amst. Neth., 2018, 17, P. 1–5.
7. Dhall A., Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxid. Basel Switz., 2018, 7, 97.
8. Shcherbakov A.B., Reukov V.V., Yakimansky A.V., Krasnopeeva E.L., Ivanova O.S., Popov, A.L., Ivanov V.K. CeO2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers, 2021, 13, 924.
9. Shirokikh A.D., Anikina V.A., Zamyatina E.A., Mishchenko E.V., Koroleva M.Y., Ivanov V.K., Popova N.R. Bioavailability of Nanoemulsions Modified with Curcumin and Cerium Dioxide Nanoparticles. Nanosyst. Phys. Chem. Math., 2023, 14, P. 89–97.
10. Ibrahim H.G., Attia N., Hashem F.E.Z.A., El Heneidy M.A.R. Cerium Oxide Nanoparticles: In Pursuit of Liver Protection against Doxorubicin- Induced Injury in Rats. Biomed. Pharmacother. Biomedecine Pharmacother., 2018, 103, P. 773–781.
11. Wu G., Zhang Z., Chen X., Yu Q., Ma X., Liu L. Chemosensitization Effect of Cerium Oxide Nanosheets by Suppressing Drug Detoxification and Efflux. Ecotoxicol. Environ. Saf., 2019, 167, P. 301–308.
12. Bahrami Z., Badiei A., Atyabi F. Surface Functionalization of SBA-15 Nanorods for Anticancer Drug Delivery. Chem. Eng. Res. Des., 2014, 92, P. 1296–1303.
13. Yu F., Tang X., Pei M. Facile Synthesis of PDMAEMA-Coated Hollow Mesoporous Silica Nanoparticles and Their PH-Responsive Controlled Release. Microporous Mesoporous Mater., 2013, 173, P. 64–69.
14. Rehman F., Ahmed K., Airoldi C., Gaisford S., Buanz A., Rahim A., Muhammad N., Volpe P.L.O. Amine Bridges Grafted Mesoporous Silica, as a Prolonged/Controlled Drug Release System for the Enhanced Therapeutic Effect of Short Life Drugs. Mater. Sci. Eng. C, 2017, 72, P. 34–41.
15. Lee S., Kwon J.A., Park K.H., Jin C.M., Joo J.B., Choi I. Controlled Drug Release with Surface-Capped Mesoporous Silica Nanoparticles and Its Label-Free in Situ Raman Monitoring. Eur. J. Pharm. Biopharm., 2018, 131, P. 232–239.
16. Nguyen T.N.T., Le N.T.T., Nguyen N.H., Ly B.T.K., Nguyen T.D., Nguyen D.H. Aminated Hollow Mesoporous Silica Nanoparticles as an Enhanced Loading and Sustained Releasing Carrier for Doxorubicin Delivery. Microporous Mesoporous Mater., 2020, 309, 110543.
17. Yu J., Wang C., Kong Q., Wu X., Lu J.-J., Chen X. Recent Progress in Doxorubicin-Induced Cardiotoxicity and Protective Potential of Natural Products. Phytomedicine Int. J. Phytother. Phytopharm., 2018, 40, P. 125–139.
18. Liu H., Wang J., Wang M., Wang Y., Shi S., Hu X., Zhang Q., Fan D., Xu P. Biomimetic Nanomedicine Coupled with Neoadjuvant Chemotherapy to Suppress Breast Cancer Metastasis via Tumor Microenvironment Remodeling. Adv. Funct. Mater., 2021, 31, 2100262.
19. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium Oxide Nanoparticles Stimulate Proliferation of Primary Mouse Embryonic Fibroblasts in Vitro. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 68, P. 406–413.
20. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Ivanov V.K. Cerium Dioxide Nanoparticles as Third-Generation Enzymes (Nanozymes). Nanosyst.: Phys. Chem. Math., 2017, P. 760–781.
21. Fitzmaurice S.D., Sivamani R.K., Isseroff R.R. Antioxidant Therapies for Wound Healing: A Clinical Guide to Currently Commercially Available Products. Skin Pharmacol. Physiol., 2011, 24, P. 113–126.
22. Ahsan H., Hadi S.M. Strand Scission in DNA Induced by Curcumin in the Presence of Cu (II). Cancer Lett., 1998, 124, P. 23–30.
23. Thomas L., Zakir F., Mirza M.A., Anwer M.K., Ahmad F.J., Iqbal Z. Development of Curcumin Loaded Chitosan Polymer Based Nanoemulsion Gel: In Vitro, Ex Vivo Evaluation and in Vivo Wound Healing Studies. Int. J. Biol. Macromol., 2017, 101, P. 569–579.
24. Ahmad N., Ahmad R., Al-Qudaihi A., Alaseel S.E., Fita I.Z., Khalid M.S., Pottoo F.H. Preparation of a Novel Curcumin Nanoemulsion by Ultrasonication and Its Comparative Effects in Wound Healing and the Treatment of Inflammation. RSC Adv., 2019, P. 20192–20206.
25. Legonkova O.A., Korotaeva A.I., Terekhova R.P., Asanova L.Yu., Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Krasnova E.V., Shekunova T.O., Ivanov V.K. Method for producing a biologically active composite based on nanocrystalline cerium dioxide and curcumin. Patent RU 2665378 C1, filed October 3, 2017, issued August 29 2018.
26. Xue Y., Luan Q., Yang D., Yao X., Zhou K. Direct Evidence for Hydroxyl Radical Scavenging Activity of Cerium Oxide Nanoparticles. J. Phys. Chem. C, 2011, 115, P. 4433–4438.
27. Plakhova T.V., Romanchuk A.Y., Butorin S.M., Konyukhova A.D., Egorov A.V., Shiryaev A.A., Baranchikov A.E., Dorovatovskii P.V., Huthwelker T., Gerber E., et al. Towards the Surface Hydroxyl Species in CeO2 Nanoparticles. Nanoscale, 2019, 11, P. 18142–18149.
28. Popova N.R., Shekunova T.O., Popov A.L., Selezneva I.I., Ivanov V.K. Cerium Oxide Nanoparticles Provide Radioprotective Effects upon X-Ray Irradiation by Modulation of Gene Expression. Nanosystems: Phys. Chem. Math., 2019, 10, P. 564–572.
29. Kim M.-K., Ki D.-H., Na Y.-G., Lee H.-S., Baek J.-S., Lee J.-Y., Lee H.-K., Cho C.-W. Optimization of Mesoporous Silica Nanoparticles through Statistical Design of Experiment and the Application for the Anticancer Drug. Pharmaceutics, 2021, 13, 184.
30. Wen J., Yang K., Xu Y., Li H., Liu F., Sun S. Construction of A Triple-Stimuli-Responsive System Based on Cerium Oxide Coated Mesoporous Silica Nanoparticles. Sci. Rep., 2016, 6, 38931.
31. Ghimire P.P., Jaroniec M. Renaissance of St¨ober Method for Synthesis of Colloidal Particles: New Developments and Opportunities. J. Colloid Interface Sci., 2021, 584, P. 838–865.
32. Ivanova O.S., Shekunova T.O., Ivanov V.K., Shcherbakov A.B., Popov A.L., Davydova G.A., Selezneva I.I., Kopitsa G.P., Tret’yakov Yu.D. One-Stage Synthesis of Ceria Colloid Solutions for Biomedical Use. Dokl. Chem., 2011, 437, P. 103–106.
33. Shcherbakov A.B., Ivanov V.K. Practical Manual on Nanomaterials and Nanotechnologies, Second edition. 2022, 382 p.
34. Chang H., Kim J., Rho W.-Y., Pham X.-H., Lee J.H., Lee S.H., Jeong D.H., Jun B.-H. Silica Nanoparticles. Adv. Exp. Med. Biol., 2021, 1309, P. 41–65.
35. Zeng D., Zhang H., Wang B., Sang K., Yang J. Effect of Ammonia Concentration on Silica Spheres Morphology and Solution Hydroxyl Concentration in Stober Process. J. Nanosci. Nanotechnol., 2015, 15, P. 7407–7411.
36. Zainal N.A., Shukor S.R.A., Razak K.A. Study on the effect of synthesis parameters of silica nanoparticles entrapped with rifampicin. Chem. Eng., 2013, 32 (7), P. 432–434.
37. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87, P. 1051–1069.
38. Capozzi C.A., Pye L.D., Condrate R.A. Vibrational Spectral/Structural Changes from the Hydrolysis/Polycondensation of Methyl-Modified Silicates. I. Comparisons for Single Monomer Condensates. Mater. Lett., 1992, 15, P. 130–136.
39. Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, 2004.
40. Bansal R., Singh R., Kaur K. Quantitative Analysis of Doxorubicin Hydrochloride and Arterolane Maleate by Mid IR Spectroscopy Using Transmission and Reflectance Modes. BMC Chem., 2021, 15, 27.
41. Smith E., Dent G. Modern Raman Spectroscopy: A Practical Approach, John Wiley and Sons, 2005.
42. Yuan P., He H.P., Wu D.Q., Wang D.Q., Chen L.J. Characterization of Diatomaceous Silica by Raman Spectroscopy. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2004, 60, P. 2941–2945.
43. Zhang R., Zhu J., Sun D., Li J., Yao L., Meng S., Li Y., Dang Y., Wang K. The Mechanism of Dynamic Interaction between Doxorubicin and Calf Thymus DNA at the Single-Molecule Level Based on Confocal Raman Spectroscopy. Micromachines, 2022, 13, 940.
44. Gautier J., Munnier E., Douziech-Eyrolles L., et al. SERS spectroscopic approach to study doxorubicin complexes with Fe2+ ions and drug release from SPION-based nanocarriers. Analyst, 2013, 24, P. 7354–7361.
45. Zheng Y.,Wang G., Chen R., Hua Y., Cai Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Research & Therapy, 2018, 9, 22.
46. Wei H., Chen J., Wang S., Fu F., Zhu X., Wu C., Liu Z., Zhong G., Lin J. A Nanodrug Consisting Of Doxorubicin And Exosome Derived From Mesenchymal Stem Cells For Osteosarcoma Treatment In Vitro. Int. J. Nanomedicine, 2019, 14, P. 8603–8610.
47. Smrke A., Anderson P.M., Gulia A., Gennatas S., Huang P.M., Jones R.L. Future Directions in the Treatment of Osteosarcoma. Cells, 2021, 10 (1), 172.
48. Niu J., Wang K., Kolattukudy P.E. Cerium Oxide Nanoparticles Inhibits Oxidative Stress and Nuclear Factor-KB Activation in H9c2 Cardiomyocytes Exposed to Cigarette Smoke Extract. J. Pharmacol. Exp. Ther., 2011, 338, P. 53–61.
49. Ramachandran M., Subadevi R., Sivakumar M. Role of PH on Synthesis and Characterization of Cerium Oxide (CeO2) Nano Particles by Modified Co-Precipitation Method. Vacuum, 2019, 161, P. 220–224.
50. Seminko V., Maksimchuk P., Grygorova G., Okrushko E., Avrunin O., Semenets V., Malyukin Y. Mechanism and Dynamics of Fast Redox Cycling in Cerium Oxide Nanoparticles at High Oxidant Concentration. J. Phys. Chem. C, 2021, 125, P. 4743–4749.
51. Shi X., Tian Y., Zhai S., Liu Y., Chu S., Xiong Z. The Progress of Research on the Application of Redox Nanomaterials in Disease Therapy. Front. Chem., 2023, 11.
52. Popov A.L., Kolmanovich D.D., Popova N.R., Sorokina S.S., Ivanova O.S., Chukavin N.N., Shcherbakov A.B., Kozlova T.O., Kalashnikova S.A., Ivanov V.K. Synthesis and Biocompatibility Study of Ceria-Mildronate Nanocomposite in Vitro. Nanosyst.: Phys. Chem. Math., 2022, 13, P. 96–103.
Рецензия
Для цитирования:
Замятина Е.А., Котцов С.Ю., Аникина В.А., Попов А.Л., Шевелева М.П., Попова Н.Р. Нанокомпозит оксид церия-оксид кремния как мультимодальная платформа для синергетического противоракового действия. Наносистемы: физика, химия, математика. 2023;14(5):560-570. https://doi.org/10.17586/2220-8054-2023-14-5-560-570
For citation:
Zamyatina E.A., Kottsov S.Yu., Anikina V.A., Popov A.L., Shevelyova M.P., Popova N.R. Cerium oxide@silica core-shell nanocomposite as multimodal platforms for drug release and synergistic anticancer effects. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):560-570. https://doi.org/10.17586/2220-8054-2023-14-5-560-570