Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A plasmonic turn-on insulin sensing platform on centimeter scale nanostructure arrays

https://doi.org/10.17586/2220-8054-2024-15-2-300-306

Abstract

We present a plasmonic turn-on biosensing assay for insulin detection via aptamer DNA based on the plasmonic interaction of centimeter scale gold/silver double-layer nanodisk arrays and gold nanoparticles. The large-scale nanostructures were fabricated by laser interference lithography technique. The detecting optical signal-extinction spectra of the system were monitored by UV-visible spectrophotometry. The 3D finite-difference time-domain simulation was used to observe the plasmonic interaction of the sensing system. The platform exhibits an exceptionally large turn-on signal by a 120 nm red shift of the localized surface plasmonic resonance peak, results in the limit detection of 140 pM. The centimeter-scale localized surface plasmon resonance nanostructures combined with turn-on design scheme would offer a promising sensor-on-chip biosensing platform.

About the Author

Thanh Thi Van Nguyen
School of Materials Science and Engineering, Hanoi University of Science and Technology
Viet Nam

No.1 Dai Co Viet street, Hanoi 100000



References

1. Morris A. New test for diabetes insipidus. Nature Reviews Endocrinology, 2019, 15 (10), P. 564–565.

2. Mane K., Chaluvaraju K., Niranjan M., Zaranappa T., Manjuthej T. Review of Insulin and its Analogues in Diabetes Mellitus. J. of basic and clinical pharmacy, 2012, 3, P. 283–293.

3. Lian K., Feng H., Liu S., Wang K., Liu Q., Deng L., Wang G., Chen Y., Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosensors and Bioelectronics, 2022, 203, 114029.

4. Warnken T., Huber K., Feige K. Comparison of three different methods for the quantification of equine insulin. BMC Veterinary Research, 2016, 12 (1), 196.

5. Manley S.E., Stratton I.M., Clark P.M., Luzio S.D. Comparison of 11 Human Insulin Assays: Implications for Clinical Investigation and Research. Clinical chemistry, 2007, 53 (5), P. 922–932.

6. Tanaka T., Matsunaga T. Fully Automated Chemiluminescence Immunoassay of Insulin Using Antibody? Protein A? Bacterial Magnetic Particle Complexes. Analytical Chemistry, 2000, 72 (15), P. 3518–3522.

7. Ho J.A., Zeng S., Huang M., Kuo H. Development of liposomal immunosensor for the measurement of insulin with femtomole detection. Analytica Chimica Acta, 2006, 556 (1), P. 127–132.

8. Gillette M.A., Carr S.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods, 2013, 10 (1), P. 28–34.

9. Cho H., Kumar S., Yang D., Vaidyanathan S., Woo K., Garcia I., Shue H.J., Yoon Y., Ferreri K., Choo H. Surface-Enhanced Raman Spectroscopy-Based Label-Free Insulin Detection at Physiological Concentrations for Analysis of Islet Performance. ACS Sensors, 2018, 3 (1), P. 65–71.

10. Kimmel D.W., LeBlanc G., Meschievitz M.E., Cliffel D.E. Electrochemical Sensors and Biosensors. Analytical Chemistry, 2012, 84 (2), P. 685–707.

11. Soffe R., Nock V., Chase J.G. Towards Point-of-Care Insulin Detection. ACS Sensors, 2019, 4 (1), P. 3–19.

12. Mayer K.M., Hafner J.H. Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 2011, 111 (6), P. 3828–3857.

13. Takeshima N., Sugawa K., Noguchi M., Tahara H., Jin S., Takase K., Otsuki J., Tamada K. Synthesis of Ag Nanoprisms with Precisely-tuned Localized Surface Plasmon Wavelengths by Sequential Irradiation of Light of Two Different Wavelengths. Chemistry Letter, 2020, 49 (3), P. 240–243.

14. Luo X., Zhu C., Saito M., Espulgar W.V., Dou X., Terada Y., Obara A., Uchiyama S., Tamiya E. Cauliflower-Like Nanostructured Localized Surface Plasmon Resonance Biosensor Chip for Cytokine Detection. Bulletin of the Chemical Society of Japan, 2020, 93 (9), P. 1121–1126.

15. Ortega M.A., Rodríguez-Comas J., Yavas O., Velasco-Mallorquí F., Balaguer-Trias J., Parra V., Novials A., Servitja J.M., Quidant R., Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. Biosensors, 2021, 11 (5), 138.

16. Hammond J.L., Bhalla N., Rafiee S.D., Estrela P. Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors, 2014, 4 (2), P. 172–188.

17. Maphanga C., Manoto S., Ombinda-Lemboumba S., Ismail Y., Mthunzi-Kufa P. Localized surface plasmon resonance biosensing of Mycobacterium tuberculosis biomarker for TB diagnosis. Sensing and Bio-Sensing Research, 2023, 39, 100545.

18. Bonya´r A. Label-Free Nucleic Acid Biosensing Using Nanomaterial-Based Localized Surface Plasmon Resonance Imaging: A Review. ACS Applied Nano Materials, 2020, 3 (9), P. 8506–8521.

19. Nguyen T.T.V., Xie X., Xu J., Wu Y., Hong M., Liu X. Plasmonic bimetallic nanodisk arrays for DNA conformation sensing. Nanoscale, 2019, 11 (41), P. 19291–19296.

20. Szunerits S., Saada H., Pagneux Q. Boukherroub R. Plasmonic Approaches for the Detection of SARS-CoV-2 Viral Particles. Biosensors, 2022, 12 (7), 548.

21. Liu C.H., Hong M.H., Cheung H.W., Zhang F., Huang Z.Q., Tan L.S., Hor T.S. A. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. Optics Express, 2008, 16 (14), P. 10701–10709.

22. Xu L., Tan L.S., Hong M.H. Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing. Applied Optics, 2011, 50 (31), P. 74–79.

23. Nguyen T.T.V. Development of plasmonic nanostructures for biological sensing. Ph.D dissertation, National University of Singapore, 2013.

24. Tombelli S., Minunni M., Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics, 2005, 20 (12), P. 2424–2434.

25. Zhou J., Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nature Reviews Drug Discovery, 2017, 16 (3), P. 181–202.

26. Taghdisi S.M., Danesh N.M., Lavaee P., Sarreshtehdar Emrani A., Ramezani M., Abnous K. Aptamer Biosensor for Selective and Rapid Determination of Insulin. Analytical Letters, 2015, 48 (4), P. 672–681.

27. Connor A.C., Frederick K.A., Morgan E.J., McGown L.B. Insulin Capture by an Insulin-Linked Polymorphic Region G-Quadruplex DNA Oligonucleotide. J. of the American Chemical Society, 2006, 128 (15), P. 4986–4991.

28. Zhang X., Zhu S., Deng C., Zhang X. An aptamer based on-plate microarray for high-throughput insulin detection by MALDI-TOF MS. Chemical Communications, 2012, 48 (21), P. 2689–2691.

29. Malik R., Roy I. Stabilization of bovine insulin against agitation-induced aggregation using RNA aptamers. Int. J. of Pharmaceutics, 2013, 452 (1), P. 257–265.

30. Wu Y., Midinov B., White R.J. Electrochemical Aptamer-Based Sensor for Real-Time Monitoring of Insulin. ACS Sensors, 2019, 4 (2), P. 498–503.

31. Taib M., Tan L.L., Abd Karim N.H., Ta G.C., Heng L.Y., Khalid B. Reflectance aptasensor based on metal salphen label for rapid and facile determination of insulin. Talanta, 2020, 207, 120321.

32. Willets K.A., Duyne R.P.V. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007, 58 (1), P. 267–297.

33. Grabar K.C., Freeman R.G., Hommer M.B., Natan M.J. Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry, 1995, 67 (4), P. 735–743.

34. Liu J., Cao Z., Lu Y. Functional Nucleic Acid Sensors. Chemical Reviews, 2009, 109 (5), P. 1948–1998.

35. Shrivastava A. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2011, 2, P. 21–25.


Review

For citations:


Nguyen T.T. A plasmonic turn-on insulin sensing platform on centimeter scale nanostructure arrays. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):300-306. https://doi.org/10.17586/2220-8054-2024-15-2-300-306

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)