Influence of SiC MOSFET design on on-resistance and breakdown voltage
https://doi.org/10.17586/2220-8054-2025-16-3-282-290
Abstract
To improve the efficiency of circuits including SiC MOSFET, it is necessary to increase their specific currents and reliability, respectively. One needs it to reduce the transistor on-resistance and to increase its breakdown voltage. To achieve these goals, the influences of the transistor’s electrophysical characteristics on its design and technological features have been studied with Sentaurus TCAD. We showed that for increasing the transistor currents, it is necessary to reduce the channel length – the distance between the p-bases of the transistor sources, and to create a JFET region. For the increasing the breakdown voltage of the device, we proposed to increase the doping level of the drift region, and suggested a new transistor design that will allow one to obtain devices with a breakdown voltage up to 2500 V.
About the Authors
O. B. ChukanovaRussian Federation
Olga B. Chukanova
Shokin square, 1, Moscow, Zelenograd, 124498
K. A. Tsarik
Russian Federation
Konstantin A. Tsarik
Shokin square, 1, Moscow, Zelenograd, 124498
References
1. Shukla R.K., Srivastava A., Rani S., Singh N., Dwivedi V.K., Pandey S.,Wadhwani N. Simulation and evaluation of perovskite solar cells utilizing various electron transport layers. Nanosystems: Phys. Chem. Math., 2024, 15(1), P. 135–146.
2. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Simulation of a quasi-ballistic quantum-barrier field-effect transistor based on GaAs quantum wire. Nanosystems: Phys. Chem. Math., 2025, 16(2), P. 183–191.
3. Ryu S.-H. 3.7 mW-cm2, 1500 V 4H-SiC DMOSFETs for advanced high power, high frequency applications, IEEE International Symposium on Power Semiconductor Devices and ICs, 2011, P. 227–230.
4. Uchida K., Saitoh Y., Hiyoshi T., Masuda T.,Wada K., Tamaso H., Hatayama T., Hiratsuka K., Tsuno T., Furumai M., Mikamura Y. The optimised design and characterization of 1200V/2.0 m cm2 4H-SiC V-groove trench MOSFETs. Proc. IEEE 27th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), Hong Kong, May 2015, P. 85–88.
5. Song Q., Yang S., Tang G., Han C., Zhang Y., Tang X., Zhang Y., Zhang Y. 4H-SiC trench MOSFET with L-shaped gate, IEEE Electron Device Lett., 2016, 37(4), P. 463–466.
6. Bharti D., Islam A. Optimization of SiC UMOSFET structure for improvement of breakdown voltage and on-resistance, IEEE Trans. Electron Devices, 2018, 65(2), P. 615–621.
7. Wang Y., Ma Y., Hao Y. Simulation study of 4H-SiC UMOS-FET structure with pC-polySi/SiC shielded region, IEEE Trans. ElectronDevices, 2017, 64(9), P. 3719–3724.
8. Stevanovic L., Matocha K., Stum Z., Losee P.A., Gowda A., Glaser J., Beaupre R. Realizing the full potential of silicon carbide power devices. IEEE Workshop on Controls and Modelling of Power Electronics, 2010, P. 1–6.
9. Baliga B.J. Fundamentals of Power Semiconductor Devices. Springer-Science, Berlin. 2008.
10. Fujii Y., Suzuki A., Furukawa K. Silicon carbide semiconductor devices having buried silicon carbide conduction barrier layers therein: Patent US5170231A Osaka Japan, H01L29/78, issued 6 Aug 1996, 11 p.
11. Shenoy P.M., Baliga B.J. The planar 6H-SiC ACCUFET. IEEE Electron Device Lett., 1997, 18, P. 589–591.
12. Saha A., Cooper J.A. A 1-kV 4H-SiC power DMOSFET optimized doe low on-resistance, IEEE Trans. Electron Devices, 2007, 55, P. 2786–2791.
13. Shenoy P.M., Baliga B.J. Analysis and optimization of the planar 6H-SiC ACCUFET. Solid State Electron, 1999, 43, P. 213–220.
14. Miura N., Fujihira K., Nakao Y., Watanabe T., Tarui Y., Kinouchi S.-I., Imaizumi M., Oomori T. Successful development of 1.2 kV 4H-SiC MOSFETs with very low on-resistance of 5 m-cm2. IEEE International Symposium on Power Semiconductor Devices and ICs, 2006, P. 1–4.
15. Sung W., Baliga B.J. Monolithically integrated 4H-SiC MOSFET and JBS diode (JBSFET) using a single Ohmic/Schottky process scheme. IEEE Electron Device Lett., 2016, 37, P. 1605–1608.
16. Sung W., Baliga B.J. On developing one-chip integration of 1.2 kV SiC MOSFET and JBS diode (JBSFET). IEEE Trans. Ind. Electron., 2017, 64, P. 8206–8212.
17. Baliga B.J. Monolithically integrated AC switch having JBSFETs therein with commonly connected drain and cathode electrodes: Patent US0010804393 North Carolina State University H01L29/78, Baliga B.J., issued 28 Jun 2017.
18. Baliga B.J., Han K.: Monolithic SiC bi-directional field effect transistor (BiDFET): concept, implementation, and electrical characteristics. GOMACTech 2018, 2018, Paper 3.2, P. 32–35.
19. Baliga B.J. Silicon carbide switching device with rectifying gate: Patent US5396085A North Carolina State University, Baliga B.J., issued 7 Mar 1995, 16 p.
20. Zhang Q., Gomez M., Bui C., Hanna E. 1600V 4H-SiC UMOSFETs with dual buffer layers, IEEE International Symposium on Power Semiconductor Devices and ICs, 2005, P. 159–162.
21. Yu H.,Wang J., Liang S., Deng G., Liu H., Ji B., John Shen Z.1.2-kV silicon carbide planar split-gate MOSFET with source field plate for superior figure-of-merits, IET Power Electron., 2022, 15, P. 1502–1510.
22. Shockley W., Read W.T. Statistics of the recombinations of holes and electrons. Phys. Rev., 1952, 87(5), P. 835–842.
23. Sinopsys Sentaurus TCAD, Synopsys Inc., Sentaurus Device User Guide. 2015.
24. Yano H., Katafuchi F., Kimoto T. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET’s, IEEE Trans. Electron Devices, 1999, 46(3), P. 504–510.
25. Okamoto M., Tanaka M., Yatsuo T., Fukuda K. Effect of oxidation process on the electrical characteristics of 4H-SiC p-channel metal-oxidesemiconductor field-effect transistors. Appl. Phys. Lett., 2006, 89, P. 023502
26. Bencherif H. Modeling and simulation of power MOSFETs based on 4H-SiC.2020.
27. Chen X., Li X., Wang Y., Chen H., Zhou C., Zhang Ch., Li Ch., Deng X., Wu Y., Zhang B. Different JFET designs on conduction and short-circuit capability for 3.3 kV planar-gate silicon carbide MOSFETs. IEEE J. of the Electron Devices Society, 2020, 8, P. 841–845.
28. Liu S., Huang M., Wang M., Zhang M., Wei J. Considerations for SiC super junction MOSFET: On-resistance, gate structure, and oxide shield. Microelectronics Journal, 2023, 137, P. 105823.
29. Rudan M., Brunetti R., Reggiani S. Springer Handbook of Semiconductor Devices. Springer-Science, Berlin. 2021.
30. Luo H., Huang Y., Zheng K., Tan Ch., Wang L., Wang Sh., Ye H., Chen X. Reliability Investigation of 4H-SiC MOSFET Based on TCAD Simulation. 2018 19-th International Conference on Electronic Packaging Technology (ICEPT), United States, August 2018, P. 956–960.
31. Raghunathan R., Baliga B.J. Measurement of electron and hole impact ionization coefficients for SiC. Proceedings of 9-th International Symposium Power Semiconductor Devices and IC’s”, Germany, May 1997, P. 173–176.
Review
For citations:
Chukanova O.B., Tsarik K.A. Influence of SiC MOSFET design on on-resistance and breakdown voltage. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):282-290. https://doi.org/10.17586/2220-8054-2025-16-3-282-290