Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Diameter dependent geometrical and electrical properties of zigzag HgSe nanotubes: A density functional study.

https://doi.org/10.17586/2220-8054-2024-15-4-473-480

Abstract

Using density functional theory, evolution of geometrical and electrical properties like wall width, binding energy, strain energy, band structure, density of states etc. of several zigzag HgSe nanotubes with diameters in the range of 11.59 to 21.74 *A are systematically investigated. It is noted that the walls of the nanotubes are gradually becoming thin with increasing tube diameter. This study reveals that the stability of the zigzag HgSe nanotube increases with increasing diameter. It is also perceived that zigzag HgSe nanotubes obey classical elasticity law. Band structure analysis reflects that all the zigzag HgSe nanotubes are direct band gap semiconductors and their band gaps slowly decrease with increasing diameter.

About the Author

M. Das
Gushkara Mahavidyalay
India

Monoj Das – Department of Physic

Gushkara, 71312



References

1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, P. 56–58.

2. Chopra N.G. et al. Boron Nitride Nanotubes. Science, 1995, 269 (5226), P. 966–967.

3. Huu C.P., Keller N., Ehret G., Ledoux M.J. The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. J. of Catalysis, 2001, 200 (2), P. 400–410.

4. Ling T., Wu M., Du X. Template synthesis and photovoltaic application of CdS nanotube arrays. Semiconductor Science and Technology, 2012, 27 (5), 055017.

5. Madlol R.A.A. Structural and optical properties of ZnO nanotube synthesis via novel method. Results in Physics, 2017, 7, P. 1498–1503.

6. Guo M., Song M., Li S., Yin Z., Song X., Bu Y. Facile and economical synthesis of ZnS nanotubes and their superior adsorption performance for organic dyes. Cryst. Eng. Comm., 2017, 19, P. 2380–2393.

7. Sinha S.S., Yadgarov L., Aliev S.B., Feldman Y., Pinkas I., Chithaiah P., Ghosh S., Idelevich A., Zak A., Tenne R. MoS2 and WS2 Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization. The J. of Physical Chemistry C, 2021, 125 (11), P. 6324–6340.

8. Shen Q., Jiang L., Miao J., Hou W., Zhu J.J. Sonoelectrochemical synthesis of CdSe nanotubes. Chem. Commun., 2008, 14, P. 1683–1685.

9. Ren J., Eason D.B., Churchill L.E., Yu Z., Boney C., et al. Integrated heterostructure devices composed of II–VI materials with Hg-based contact layers. J. of Crystal Growth, 1994, 138, P. 455–463.

10. Truchseß M.V., Pfeuffer-Jeschke A., Becker C.R., Landwehr G., Batke E. Electronic band structure of HgSe from Fourier transform spectroscopy. Phys. Rev. B, 2000, 61, 1666.

11. Ding T., Zhang J.R., Hong J.M., Zhu J.J., Chen H.Y. Sonochemical synthesis of taper shaped HgSe nanorods in polyol solvent. J. of Crystal Growth, 2004, 260, P. 527–531.

12. Zare M.E., Niasari M.S., Sobhani A. Simple sonochemical synthesis and characterization of HgSe nanoparticles. Ultrasonics Sonochemistry, 2012, 19 (5), P. 1079–1086.

13. Ding T., Zhu J.J., Hong J.M. Sonochemical preparation of HgSe nanoparticles by using different reductants. Materials Letters, 2003, 57, P. 4445– 4449.

14. Wang S., Guo T., Cao S. The Influence of Synthetic Parameters on HgSe QDs. ACS Omega, 2023, 8 (47), P. 44804–44811.

15. Mahalingam T., Kathalingam A., Sanjeeviraja C., Chandramohan R., Chu J.P, Kim Y.D., Velumani S. Electrodeposition and characterization of HgSe thin films. Materials Characterization, 2007, 58 (8–9), P. 735–739.

16. Hankare P.P., Bhuse V.M., Garadkar K.M., Jadhav A.D. A novel method to grow polycrystalline HgSe thin film. Materials Chemistry and Physics, 2001, 71 (1), P. 53–57.

17. Hankare P.P., Bhuse V.M., Garadkar K.M., Delekar S.D., Mulla I.S. Chemical deposition of cubic CdSe and HgSe thin films and their characterization. Semiconductor Science and Technology, 2004, 19, 70.

18. Bazarganipour M., Sadri M., Davar F., Niasari M.S. Mercury selenide nanorods: Synthesis and characterization via a simple hydrothermal method. Polyhedron, 2011, 30 (6), P. 1103–1107.

19. Arnepalli R.R., Dutta V. Nanotubes in Low Temperature Spray Deposited Nanocrystalline HgSe: I thin films. MRS Online Proceedings Library, 2006, 922, 209.

20. Arnepalli R.R., Dutta V., Singh V.N. Multiwalled HgX (X = S, Se, Te) Nanotubes Formed with a Mercury Iodide Catalyst in Nanocrystalline Thin Films Spray-Deposited at Low Temperature. Advanced Materials, 2008, 20 (10), P. 1945–1951.

21. Jana M.K., Chithaiah P., Murali B., Krupanidhi S.B., Biswasa K., Rao C.N.R. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface. J. Mater. Chem. C, 2013, 1, P. 6184–6187.

22. Chen M., Hao Q., Luo Y., Tang X. Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots. ACS Nano, 2022, 16 (7), P. 11027–11035.

23. Zhao X., Mu G., Tang X., Chen M. Mid-IR Intraband Photodetectors with Colloidal Quantum Dots. Coatings, 2022, 12 (4), 467.

24. Hao Q., Ma H., Xing X., Tang X., Wei Z., Zhao X., Chen M. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors. Materials, 2023, 16 (23), 7321.

25. Prudnikau A., Roshan H., Paulus F., Garc´ıa B.M., H¨ubner R., Jalali H.B., Franco M.D., Prato M., Stasio F.D., Lesnyak V. Efficient Near-Infrared Light-Emitting Diodes Based on CdHgSe Nanoplatelets. Advanced Functional Materials, 2024, 34, 2310067.

26. Hodges J.M., Hao S., Grovogui J.A., Zhang X., Bailey T.P., Li X., Gan Z., Hu Y.Y., Uher C., Dravid V.P., Wolverton C., Kanatzidis M.G. Chemical Insights into PbSe – x% HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. J. of the American Chemical Society, 2018, 140 (51), P. 18115–18123.

27. Yun J., Cho K., Park Y., Yang S., Choi J., Kim S. Thermoelectric characteristics of nanocomposites made of HgSe and Ag nanoparticles for flexible thermoelectric devices. Nano Research, 2017, 10 (2), P. 683–689.

28. Tang X., Wua G.F., Lai K.W.C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J. Mater. Chem. C, 2017, 5, P. 362–369.

29. Delin A., Kl¨uner T. Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems β-HgS, HgSe, and HgTe. Phys. Rev. B, 2002, 66, 035117.

30. Radescu S., Mujica A., L´opez-Solano J., Needs R.J. Theoretical study of pressure-driven phase transitions in HgSe and HgTe. Phys. Rev. B, 2011, 83, 094107.

31. Duz I., Kart S.O., Erdem I., Kuzucu V. DFT study on phase transition behavior and mechanical properties of HgSe polymorphs under high pressure. Current Applied Physics, 2018, 18 (4), P. 424–436.

32. Secuk M.N., Aycibin M., Erdinc B., Gulebaglan S.E., Dogan E.K., Akkus H. Ab-initio Calculations of Structural, Electronic, Optical, Dynamic and Thermodynamic Properties of HgTe and HgSe. American J. of Condensed Matter Physics, 2014, 4 (1), P. 13–19.

33. Li J., He C., Meng L., Xiao H., Tang C., Wei X., Kim J., Kioussis N., Stocks G.M., Zhong J. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe. Scientific Reports, 2015, 5 (1), 14115.

34. Habibes N.E.H., Boukortt A., Meskine S., Benbedra A., Mamouni Y., Bennacer H. Electronic and Optical Properties of Mn-Doped HgSe Topological Insulator for Spintronic Devices. ECS J. Solid State Sci. Technol., 2024, 13, 013013.

35. Ordej´on P., Artacho E., Soler J.M. Self-consistent order N density functional calculations for very large systems. Phys. Rev. B, 1996, 53 (16), R10441–R10444.

36. Soler J.M., Artacho E., Gale J.D., Garc´ıa A., Junquera J., Ordej´on P., Portal D.S. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter., 2002, 14 (11), P. 2745–2779.

37. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1997, 78, 1396.

38. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13, 5188.

39. Zhao M., Xia Y., Zhang D., Mei L. Stability and electronic structure of AlN nanotubes. Phys. Rev. B, 2003, 68, 235415.

40. Das M., Mukherjee P., Chowdhury S., Gupta B.C. Tunable structural and electrical properties of zigzag CdS nanotubes: A density functional study. Phys. Status Solidi B, 2017, 254 (9), 1700038.

41. Das M., Chowdhury S., Gupta B.C. Atomic-Ordering-Induced Modulated Properties of Zigzag ZnTe Nanotubes. Phys. Status Solidi B, 2021, 258 (8), 2100115.

42. Senger R.T., Dag S., Ciraci S. Chiral Single-Wall Gold Nanotubes. Phys. Rev. Lett., 2004, 93, 196807.

43. Pan H., Feng Y.P. Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-Volume Ratio. ACS Nano, 2008, 2 (11), P. 2410–2414.

44. Xiang H.J., Yang J., Hou J.G., Zhu Q. Piezoelectricity in ZnO nanowires: A first-principles study. Appl. Phys. Lett., 2006, 89, 223111.


Review

For citations:


Das M. Diameter dependent geometrical and electrical properties of zigzag HgSe nanotubes: A density functional study. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):473-480. https://doi.org/10.17586/2220-8054-2024-15-4-473-480

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)