Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nanocomposites of aromatic poly(amide-imide) with nanotubular Mg-Fe hydrosilicate

https://doi.org/10.17586/2220-8054-2024-15-2-268-284

Abstract

Composite films based on aromatic polyamide imide with carboxyl-containing fragments in repeating units (PAI-Ac) containing hydrosilicate nanotubes (Mg,Fe)3Si2O5(OH)4 are structurally sensitive to the molecular weight of the polymer used. According to Mössbauer spectroscopy data, nanotubes introduced into a polymer matrix generally retain their original structure. When using a polymer with a relatively low molecular weight, composite films are formed that are not stable during the pervaporation of cyclohexane and ethanol. In the case of a high-molecular polymer, the resulting MMM-type membranes are stable during pervaporation. They are more permeable to polar liquids compared to the base polymer and MMMs containing Mg3Si2O5(OH)4 nanotubes. Analysis of the found differences in the properties of the studied nanocomposites with iron-containing nanotubes in the PAI-Ac matrix from similar nanocomposites with magnesium-containing nanotubes leads to the conclusion about the need to study MMMs with iron-containing nanoparticles of a different structure.

About the Authors

S. V. Kononova
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Svetlana V. Kononova – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



G. K. Lebedeva
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Galina K. Lebedeva – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



V. S. Kozlov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
Russian Federation

Valery S. Kozlov – Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”.

Gatchina



E. N. Korytkova
Russian Academy of Science, Grebenshchikov Institute of Silicate Chemistry
Russian Federation

Eleonora N. Korytkova – Russian Academy of Science, Grebenshchikov Institute of Silicate Chemistry.

St. Petersburg



T. P. Maslennikova
Russian Academy of Science, Grebenshchikov Institute of Silicate Chemistry
Russian Federation

Tatyana P. Maslennikova – Russian Academy of Science, Grebenshchikov Institute of Silicate Chemistry.

St. Petersburg



E. V. Kruchinina
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Elena V. Kruchinina – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



E. N. Vlasova
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Elena N. Vlasova – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



N. N. Saprykina
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Natalia N. Saprykina – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



G. N. Gubanova
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Galina N. Gubanova – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



M. E. Vylegzhanina
Institute of Macromolecular Compounds Russian Academy of Science
Russian Federation

Milana E. Vylegzhanina – Institute of Macromolecular Compounds Russian Academy of Science.

199004, Bolshoy pr. 31, St. Petersburg



V. T. Lebedev
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
Russian Federation

Vasiliy T. Lebedev – Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”.

Gatchina



References

1. Sreekumar T.V., Liu T., Min B.G., Guo H., Kumar S., Hauge R.H., Smalley R.E. Polyacrylonitrile Single-Walled Carbon Nanotube Composite Fibers. Adv. Mat., 2004, 16 (1), 58.

2. Yudin V.E., Otaigbe J.U., Gladchenko S., Olson B.G., Nazarenko S., Korytkova E.N., Gusarov V.V. New polyimide nanocomposites based on silicate type nanotubes: Dispersion, processing and properties. Polymer, 2007, 48, P. 1306–1315.

3. Zhen-Liang X.U., Li-Yun Y.U., Ling-Feng H.A.N. Polymer-nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng. China, 2009, 3 (3), 318.

4. Samad A., Lau K.Y., Khan I.A., Khoja A.H., Jaffar M.M., Tahir M. Structure and breakdown property relationship of polyethylene nanocomposites containing laboratory-synthesized alumina, magnesia and magnesium aluminate nanofillers. J. Phys. Chem. Solids, 2018, 120, P. 140–146.

5. Li S., Lin M.M., Toprak M.S., Kim D.K., Muhammed M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Reviews, 2010, 1, 5214.

6. Jeon I-Y., Baek J-B. Nanocomposites Derived from Polymers and Inorganic Nanoparticles. Materials, 2010, 3 (6), 3654.

7. Sawunyama L., Ajiboye T.O., Oyewo O., Onwudiwe D.C. Ceramic-polymer composite membranes: Synthesis methods and environmental applications. Ceramics Int., 2024, 50, P. 5067–5079.

8. Vu De Q., Koros W. J., Miller S. J. High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fiber Membranes. Industrial & engineering chemistry research 2002, 41 (3), 367.

9. Mahajan R., Koros W.J., Thundyil M. Mixed matrix membranes: important and challenging. Membrane Technology, 1999, 105, 6.

10. Moaddeb M., Koros W.J. Occlusion of pores of polymeric membranes with colloidal silica. J. Membrane Sci., 1997, 136 (1), P. 273–277.

11. Koros W.J., Coleman M.R., Walker D.R.B. Controlled permeability polymer membranes. Annu. Rev. Mater. Sci., 1992, 22, P. 47–89.

12. Singh-Ghosal A., Koros W.J. Energetic and entropic contributions to mobility selectivity in glassy polymers for gas separation membranes. Ind. Eng. Chem. Res., 1999, 38, 3647.

13. Pinnau I., He Z.J., Morisato A. Nanostructured poly (4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Abstr. Pap. Am. Chem. Soc. Part 2, 2001, 222, U368.

14. Nunes S.P., Peinemann K.V., Ohlrogge K., Alpers A., Keller M., Pires A.T.N. Membranes of poly(ether imide) and nanodispersed silica. J. Membrane Sci., 1999, 157, 219.

15. Potschke P., Fornes T.D., Paul D.R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer, 2000, 41, 3861.

16. Baughman R.H., Zakhidov A.A., Heer W.A. Carbon Nanotubes – the Route Toward Applications. Science, 2002, 297 (5582), 787.

17. Sholl D.S., Johnson J.K. Making High-Flux Membranes with Carbon Nanotubes. Science, 2006, 312 (5776), P. 1003–1004.

18. McGinnis R.L., Reimund K., Ren J., Xia L., Chowdhury M.R., Sun X., Abril M., Moon J.D., Merrick M.M., Park J., Stevens K.A., McCutcheon J.R., Freeman B.D. Large-scale polymeric carbon nanotube membranes with sub–1.27 nm pores. Sci. Adv., 2018, 4 (3), 1700938.

19. Geise G.M., Paul D.R., Freeman B.D. Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 2014, 39 (1), P. 1–42.

20. Kononova S.V., Gubanova G.N., Korytkova E.N., Sapegin D.A., Setnickova K., Petrychkovych R., Uchytil P. Polymer Nanocomposite Membranes. Appl. Sci., 2018, 8, 1181.

21. Korytkova E.N., Maslov A.V., Pivovarova L.N., Drozdova I.A., Gusarov V.V. Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Phys. Chem. (Engl. Transl.), 2004, 30 (1), P. 51–55.

22. Kononova S.V., Korytkova E.N., Romashkova K.A., Kuznetsov Y.P., Gofman I.V., Svetlichnyi V.M., Gusarov V.V. Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology. Russian J. of Applied Chemistry, 2007 80 (12), P. 2142–2148.

23. Skuland T., Maslennikova T., Lag M., Gatina E., Serebryakova M., Trulioff A., Kudryavtsev I., Klebnikova N., Kruchinina I., Schwarze P. E., Refsnes M. Synthetic hydrosilicate nanotubes induce low pro?inflammatory and cytotoxic responses compared to natural chrysotile in lung cell cultures. Basic & Clinical Pharmacology & Toxicology, 2019, 126 (2), 13341.

24. Korytkova E.N., Pivovarova L.N., Drozdova I.A., Gusarov V.V. Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions. Glass Physics and Chemistry, 2005, 31 (6), P. 797–802.

25. Gubanova G.N., Kononova S.V., Vylegzhanina M.E., Sukhanova T.E., Grigor’Ev A.I., Romashkova K.A., Svetlichnyi V.M., Korytkova E.N., Christi M., Timpu D., Harabagiu V. Structure, morphology, and thermal properties of nanocomposites based on polyamidoimides and hydrosilicate nanotubes. Russian J. of Applied Chemistry, 2010, 83 (12), P. 2175–2181.

26. Kononova S.V., Korytkova E.N., Maslennikova T.P., Romashkova K.A., Kruchinina E.V., Potokin I.L., Gusarov V.V. Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russ. J. Gen. Chem., 2010, 80, 1136.

27. Gubanova G.N., Sukhanova T.E., Vylegzhanina M.E., Lavrentiev V.K., Romashkova K.A., Kutin A.A., Maslennikova T.P., Kononova S.V. Analysis of the surface morphology, structure and properties of polyamidoimide nanocomposites with tubular hydrosilicates. J. of Surf. Invest.: X-ray, Synchrotron and Neutron Techniques, 2017, 11 (5), 1022.

28. Gusinskaya V.A., Koton M.M., Batrakova T.V., Romashkova K.A. Poly(amino) imides based on symmetrical and asymmetrical imido acid dichlorides. Polymer Science U.S.S.R., 1976, A18 (12), P. 3062–3068.

29. Korytkova E.N., Pivovarova L.N., Semenova O.E., Drozdova I.A., Povinich V.F., Gusarov V.V. Hydrothermal synthesis of nanotubulal Mg-Fe hydrosilicate. Russian J. of Inorganic Chemistry, 2007, 52 (3), P. 338–344.

30. Kononova S.V., Kremnev R.V., Suvorova E.I., Baklagina Y.G., Volchek B.Z., Uchytil P., Shabsels B.M., Romashkova K.A., Setnickova K., Reznickova J. Pervaporation membranes with poly(γ-benzyl-l-glutamate) selective layers for separation of toluene–n-heptane mixtures. J. Membr. Sci., 2015, 477, 14.

31. Eckhard Bill, in 57Fe-Mössbauer Spectroscopy and Basic Interpretation of Mössbauer Parameters, (Eds: Crichton R.R., Louro R.O.), Elsevier, 2013, 5, P. 109–130.

32. Eckhard Bill, in 57Fe-Mo¨ssbauer spectroscopy and basic interpretation of Mössbauer parameters, (Eds: Crichton R.R., Louro R.O.), Elsevier, 2020, 6, P. 201–228.

33. Boulatov F.M., Ivoilova E.Kh. Structural features of chrysotile asbestos according to Mössbauer spectroscopy data. Mineralogical J., 1985, 7 (2), P. 22–29.

34. Ristić M., Czakó-Nagy I., Musić S., Vértes A. Spectroscopic characterization of chrysotile asbestos from different regions. J. of Molec. Struct., 2011, 993, 120.

35. Lemos B.R.S., Teixeira A.P.C., Ardisson J.D., Macedo W.A.A., Fernandes-Outon L.E., Amorim C.C., Moura F.C.C., Lago R.M. Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters. Appl. Sci., 2012, 2 (2), 513.

36. Krasilin A.A., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of variable-composition iron(III) hydrosilicates with the chrysotile structure. J. of Gen. Chem., 2016, 86 (12), 1943.

37. Kozlov V.S., Maslennikova T.P., Korytkova E.N., Kononova S.V. Möessbauer study of iron ions localization in the structure of synthetic chrysotile-asbestos hydrosilicate nanotubes. Neutron Scattering in Condensed Matter Research (RNICS-2021), Russia, Ekaterinburg, 2021, 306.

38. Gubanova G.N., Timpu D., Cristea M., Kononova S.V., Korytkova E.N., Sapegin D.A., Saprykina N.N., Volkov A.Y., Klechkovskaya V.V. Nanocomposites Based on Poly(Amide-Imide) Matrix with Na–Mg Triple Chain Hydrosilicate. Crystallography Reports, 2021, 66 (7), 1185.

39. Kryazheva K.S., Korytkova E.N., Maslennikova T.P., Ugolkov V.L. Interacton of chrisotyl nanotubes with water-alcohol solutons at different temperature-time parameters. Glass Phys. Chem., 2012, 38 (1), 122.


Review

For citations:


Kononova S.V., Lebedeva G.K., Kozlov V.S., Korytkova E.N., Maslennikova T.P., Kruchinina E.V., Vlasova E.N., Saprykina N.N., Gubanova G.N., Vylegzhanina M.E., Lebedev V.T. Nanocomposites of aromatic poly(amide-imide) with nanotubular Mg-Fe hydrosilicate. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):268-284. https://doi.org/10.17586/2220-8054-2024-15-2-268-284

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)