he control of by-product formation rates in photocatalytic hydrogen evolution reaction from organic substances over Pt/g–C3N4
https://doi.org/10.17586/2220-8054-2024-15-4-548-557
Abstract
The results on the photocatalytic activity of 0 – 2 wt.% Pt/g-C3N4 in the hydrogen evolution reaction under visible light (430 nm) are presented. Triethanolamine (TEOA), glycerol, glucose and cellulose were used as electron donor. During the reaction, not only the target product, hydrogen, but also by-products of the reaction in the gas phase, namely CO and CO2, were controlled. In order to study the chemical composition, microstructure and optical properties, the samples were investigated by XPS, TEM and diffuse reflection methods. The maximum hydrogen evolution rate obtained for 1 % Pt/g-C3N4 from TEOA solution was 3.96 μmol·min−1, with a selectivity of 100 %. The use of glycerol and cellulose resulted in the production of syngas, and varying the platinum content allowed the selectivity of the process to vary (42.4 to 100 %). Glucose using led to the formation of a mixture of CO2 and H2 with a selectivity of 90 % or higher. In general, hydrogen-containing mixtures obtained using organic substrates can be further used in various applications.
Keywords
About the Authors
K. O. PotapenkoRussian Federation
Ksenia O. Potapenko
Novosibirsk, 630090
E. E. Aydakov
Russian Federation
Egor E. Aydakov
Novosibirsk, 630090
E. Y. Gerasimov
Russian Federation
Evgeny Y. Gerasimov
Novosibirsk, 630090
E. A. Kozlova
Russian Federation
Ekaterina A. Kozlova
Novosibirsk, 630090
References
1. Li J., Xin Y., Hu B., Zeng K., Wu Z., Fan S., Li Y., Chen Y., Wang S., Wang J., et al. Safety and Thermal Efficiency Performance Assessment of Solar Aided Coal-Fired Power Plant Based on Turbine Steam Double Reheat. Energy, 2021, 226, 120277.
2. Alola A.A., Olanipekun I.O., Shah M.I. Examining the Drivers of Alternative Energy in Leading Energy Sustainable Economies: The Trilemma of Energy Efficiency, Energy Intensity and Renewables Expenses. Renew. Energy, 2023, 202, P. 1190–1197.
3. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., et al. The Green Chemistry Paradigm in Modern Organic Synthesis. Russ. Chem. Rev., 2023, 92, RCR5104.
4. Azam M.S., Bhattacharjee A., Hassan M., Rahaman M., Aziz S., Ali Shaikh M.A., Islam M.S. Performance Enhancement of Solar PV System Introducing Semi-Continuous Tracking Algorithm Based Solar Tracker. Energy, 2024, 289, 129989.
5. Xu F., Weng B. Photocatalytic Hydrogen Production: An Overview of New Advances in Structural Tuning Strategies. J. Mater. Chem. A, 2023, 11, P. 4473–4486.
6. Chu X., Sathish C.I., Yang J.H., Guan X., Zhang X., Qiao L., Domen K., Wang S., Vinu A., Yi J. Strategies for Improving the Photocatalytic Hydrogen Evolution Reaction of Carbon Nitride-Based Catalysts. Small, 2023, 19, 2302875.
7. Li T., Tsubaki N., Jin Z. S-Scheme Heterojunction in Photocatalytic Hydrogen Production. J. Mater. Sci. Technol., 2024, 169, P. 82–104.
8. Dorosheva I.B., Vokhmintsev A.S., Weinstein I.A., Rempel A.A. Induced Surface Photovoltage in TiO2 Sol-Gel Nanoparticles. Nanosystems: Phys. Chem. Math., 2023, 14, P. 447–453.
9. Kozlova E.A., Valeeva A.A., Sushnikova A.A., Zhurenok A.V., Rempel A.A. Photocatalytic Activity of Titanium Dioxide Produced by High Energy Milling. Nanosystems: Phys. Chem. Math., 2022, 13, P. 632–639.
10. Maeda K., Wang X., Nishihara Y., Lu D., Antonietti M., Domen K. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C, 2009, 113, P. 4940–4947.
11. Gao F., Xiao H., Yang J., Luan X., Fang D., Yang L., Zi J., Lian Z. Modulation of Electronic Density in Ultrathin G-C3N4 for Enhanced Photocatalytic Hydrogen Evolution through an Efficient Hydrogen Spillover Pathway. Appl. Catal. B Environ., 2024, 341, 123334.
12. Fu J., Yu J., Jiang C., Cheng B. G-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater., 2018, 8, 1701503.
13. Feng C., Tang L., Deng Y., Wang J., Liu Y., Ouyang X., Yang H., Yu J., Wang J. A Novel Sulfur-Assisted Annealing Method of g-C3N4 Nanosheet Compensates for the Loss of Light Absorption with Further Promoted Charge Transfer for Photocatalytic Production of H2 and H2O2. Appl. Catal. B Environ., 2021, 281, 119539.
14. Zou J., Liao G., Jiang J., Xiong Z., Bai S., Wang H., Wu P., Zhang P., Li X. In-Situ Construction of Sulfur-Doped g-C3N4/Defective g-C3N4 Isotype Step-Scheme Heterojunction for Boosting Photocatalytic H2 Evolution. Chinese J. Struct. Chem., 2022, 41, P. 2201025–2201033.
15. Zhang G., Lan Z.A., Wang X. Surface Engineering of Graphitic Carbon Nitride Polymers with Cocatalysts for Photocatalytic Overall Water Splitting. Chem. Sci., 2017, 8, P. 5261–5274.
16. Rosman N.N., Yunus R.M., Shah N.R.A.M., Shah R.M., Arifin K., Minggu L.J., Ludin N.A. An Overview of Co-Catalysts on Metal Oxides for Photocatalytic Water Splitting. Int. J. Energy Res., 2022, 46, P. 11596–11619.
17. Kharina S.N., Kurenkova A.Y., Saraev A.A., Gerasimov E.Y., Kozlova E.A. Copper-Modified g-C3N4/TiO2 Nanostructured Photocatalysts for H2 Evolution from Glucose Aqueous Solution. Nanosystems: Phys. Chem. Math., 2024, 15, P. 388–397.
18. Chebanenko M.I., Lebedev L.A., Tenevich M.I., Stovpiaga E.Y., Popkov V.I. Planetary Grinding’s Impact on the Structure and Photocatalytic Characteristics of Urea-Derived g-C3N4 Nanocrystals. Nanosystems: Phys. Chem. Math., 2023, 14, P. 705–712.
19. Huang D., Li Z., Zeng G., Zhou C., Xue W., Gong X., Yan X., Chen S., Wang W., Cheng M. Megamerger in Photocatalytic Field: 2D g-C3N4 Nanosheets Serve as Support of 0D Nanomaterials for Improving Photocatalytic Performance. Appl. Catal. B Environ., 2019, 240, P. 153–173.
20. Chen L., Maigbay M.A., Li M., Qiu X. Synthesis and Modification Strategies of G-C3N4 Nanosheets for Photocatalytic Applications. Adv. Powder Mater., 2024, 3, 100150.
21. Liu C., Jing L., He L., Luan Y., Li C. Phosphate-Modified Graphitic C3N4 as Efficient Photocatalyst for Degrading Colorless Pollutants by Promoting O2 Adsorption. Chem. Commun., 2014, 50, P. 1999–2001.
22. Potapenko K.O., Cherepanova S.V., Kozlova E.A. A New Strategy for the Synthesis of Highly Active Catalysts Based on G-C3N4 for Photocatalytic Production of Hydrogen under Visible Light. Dokl. Phys. Chem., 2023, P. 1–9.
23. Scofield J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV. J. Electron Spectros. Relat. Phenomena, 1976, 8, P. 129–137.
24. Shirley D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B, 1972, 5, 4709.
25. Fairley N. URL: www.casaxps.com.
26. Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. In Situ Construction of G-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces, 2013, 5, P. 11392–11401.
27. Liu H., Chen D., Wang Z., Jing H., Zhang R. Microwave-Assisted Molten-Salt Rapid Synthesis of Isotype Triazine-/Heptazine Based g-C3N4 Heterojunctions with Highly Enhanced Photocatalytic Hydrogen Evolution Performance. Appl. Catal. B Environ., 2017, 203, P. 300–313.
28. Tenney S.A., He W., Ratliff J.S., Mullins D.R., Chen D.A. Characterization of Pt-Au and Ni-Au Clusters on TiO2(110). Top. Catal., 2011, 54, P. 42–55.
29. Barr T.L. An ESCA Study of the Termination of the Passivation of Elemental Metals. J. Phys. Chem., 1978, 82, P. 1801–1810.
30. Bernsmeier D., Sachse R., Bernicke M., Schmack R., Kettemann F., Polte J., Kraehnert R. Outstanding Hydrogen Evolution Performance of Supported Pt Nanoparticles: Incorporation of Preformed Colloids into Mesoporous Carbon Films. J. Catal., 2019, 369, P. 181–189.
31. Gołabiewska A., Lisowski W., Jarek M., Nowaczyk G., Zieli´nska-Jurek A., Zaleska A. Visible Light Photoactivity of TiO2 Loaded with Monometallic (Au or Pt) and Bimetallic (Au/Pt) Nanoparticles. Appl. Surf. Sci., 2014, 317, P. 1131–1142.
32. Maillard F., Schreier S., Hanzlik M., Savinova E.R., Weinkauf S., Stimming U. Influence of Particle Agglomeration on the Catalytic Activity of Carbon-Supported Pt Nanoparticles in CO Monolayer Oxidation. Phys. Chem. Chem. Phys., 2005, 7, P. 385–393.
33. Vorontsov A.V., Stoyanova I.V., Kozlov D.V., Simagina V.I., Savinov E.N. Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide. J. Catal., 2000, 189, P. 360–369.
34. Lam S.W., Chiang K., Lim T.M., Amal R., Low G.K.C. The Effect of Platinum and Silver Deposits in the Photocatalytic Oxidation of Resorcinol. Appl. Catal. B Environ., 2007, 72, P. 363–372.
35. Kozlova E.A., Parmon V.N. Heterogeneous Semiconductor Photocatalysts for Hydrogen Production from Aqueous Solutions of Electron Donors. Russ. Chem. Rev., 2017, 86, P. 870–906.
36. Mazumder V., Lee Y., Sun S. Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions. Adv. Funct. Mater., 2010, 20, P. 1224– 1231.
37. Lordi V., Yao N., Wei J. Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst. Chem. Mater., 2001, 13, P. 733–737.
38. Emmanuel J. Comparative Activity of Platinum and Gold Nanoparticles Catalysts for Carbon Monoxide Oxidation. Ethiop. J. Sci. Technol., 2022, 15, P. 155–172.
39. Haynes C.A., Gonzalez R. Rethinking Biological Activation of Methane and Conversion to Liquid Fuels. Nat. Chem. Biol., 2014, 10, P. 331–339.
40. Sartipi S., Makkee M., Kapteijn F., Gascon J. Catalysis Engineering of Bifunctional Solids for the One-Step Synthesis of Liquid Fuels from Syngas: A Review. Catal. Sci. Technol., 2014, 4, P. 893–907.
41. Centi G., Perathoner S. Status and Gaps toward Fossil-Free Sustainable Chemical Production. Green Chem., 2022, 24, P. 7305–7331.
42. Ketchie W.C., Murayama M., Davis R.J. Selective Oxidation of Glycerol over Carbon-Supported AuPd Catalysts. J. Catal., 2007, 250, P. 264–273.
43. Limpachanangkul P., Liu L., Hunsom M., Piumsomboon P., Chalermsinsuwan B. Application of Bi2O3/TiO2 Heterostructures on Glycerol Photocatalytic Oxidation to Chemicals. Energy Reports, 2022, 8, P. 1076–1083.
44. Coseri S., Biliuta G., Simionescu B.C., Stana-Kleinschek K., Ribitsch V., Harabagiu V. Oxidized Cellulose—Survey of the Most Recent Achievements. Carbohydr. Polym., 2013, 93, P. 207–215.
45. Jin B., Yao G., Wang X., Ding K., Jin F. Photocatalytic Oxidation of Glucose into Formate on Nano TiO2 Catalyst. ACS Sustain. Chem. Eng., 2017, 5, P. 6377–6381.
46. Zhao H., Ding X., Zhang B., Li Y., Wang C. Enhanced Photocatalytic Hydrogen Evolution along with Byproducts Suppressing over Z-Scheme CdxZn1−xS/Au/g-C3N4 Photocatalysts under Visible Light. Sci. Bull., 2017, 62, P. 602–609.
47. Herrera-Beurnio M.C., L´opez-Tenllado F.J., Hidalgo-Carrillo J., Mart´ın-G´omez J., Est´evez R., Urbano F.J., Marinas A. Glycerol Photoreforming for Photocatalytic Hydrogen Production on Binary and Ternary Pt-g-C3N4-TiO2 Systems: A Comparative Study. Catal. Today, 2024, 430, 114548
Review
For citations:
Potapenko K.O., Aydakov E.E., Gerasimov E.Y., Kozlova E.A. he control of by-product formation rates in photocatalytic hydrogen evolution reaction from organic substances over Pt/g–C3N4. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):548-557. https://doi.org/10.17586/2220-8054-2024-15-4-548-557